Skip to main content
Log in

Ensuring traceability of organophosphate pesticides (OPs) through enzyme immobilized spheres

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Currently, pesticide residues increasingly lead to health problems. Acetylcholinesterase enzyme (AChE) plays a role in detoxification processes due to their ability to scavenge organophosphates. Thus, this enzyme has been selected for the detection of pesticides. Herein, this study describes the preparation and application of appropriate new immobilized spheres that could be used for the detection of organophosphorus pesticide residues. That is a simple colorimetric enzymatic assay for the practical discovery of N-(Mercaptomethyl) phthalimide S–(O, O–dimethylphosphorodithioate) from organophosphorus pesticides (OPs) widely used in the treatment of sugar beet, apple, nut, corn, and tobacco. The process is based on the immobilization of acetylcholinesterase onto tryptophan FMPS-Trp, (FMPS-Trp)Pd(II), and (FMPS-Trp)Pt(II) functionalized spheres. Spectroscopic and microscopic techniques were used in the characterization of the spheres where scanning electron microscopy (SEM) is an essential tool. The (FMPS-Trp)Pt(II)-AChE showed a good affinity to acetylthiocholine chloride (ATCl) and was found to have the ability to catalyze the hydrolysis of ATCl with an apparent Michaelis–Menten constant value of 288 mM. The developed colorimetric process showed good qualitative analytical performance for Phosmet (OPs) detection as low as 10−7 M.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Yu, W. Wu, Q. Zhao, X. Wei, Q. Lu, Biosens. Bioelectron. 68, 288 (2015). https://doi.org/10.1016/j.bios.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  2. S. Qian, H. Lin, Anal. Chem. 87, 5395 (2015). https://doi.org/10.1021/acs.analchem.5b00738

    Article  CAS  PubMed  Google Scholar 

  3. N. Zhang, Y. Si, Z. Sun, S. Li, Y. Lin, H. Wang, Analyst. 139, 4620 (2014). https://doi.org/10.1039/C4AN00855C

    Article  CAS  PubMed  Google Scholar 

  4. A.S. Tsagkaris, L. Uttl, J. Pulkrabova, J. Hajslova, Appl. Sci. 10, 565 (2020). https://doi.org/10.3390/app10020565

    Article  CAS  Google Scholar 

  5. M.B. Colovic, D.Z. Krstic, T.D. Lazarevic-Pasti, A.M. Bondzic, V.M. Vasic, Curr. Neuropharmacol. 11, 315 (2013). https://doi.org/10.2174/1570159X11311030006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Arora, S. Balotra, G. Pandey, A. Kumar, Toxicol. Lett. 268, 8 (2017). https://doi.org/10.1016/j.toxlet.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  7. C.M. Thompson, J.M. Gerdes, H.F. VanBrocklin, Neurobiol. Disease 133, 104455 (2020). https://doi.org/10.1016/j.nbd.2019.04.011

    Article  CAS  Google Scholar 

  8. M. Wei, J. Wang, Sensor. Actuat. B Chem. 211, 290 (2015). https://doi.org/10.1016/j.snb.2015.01.112

    Article  CAS  Google Scholar 

  9. R.R. Dutta, P. Puzari, Biosens. Bioelectron. 52, 166 (2014). https://doi.org/10.1016/j.bios.2013.08.050

    Article  CAS  PubMed  Google Scholar 

  10. Q. Zhuang, A.J. Franjesevic, T.S. Corrigan, W.H. Coldren, R. Dicken, S. Sillart, A. DeYong, N. Yoshino, J. Smith, S. Fabry, K. Fitzpatrick, T.G. Blanton, J. Joseph, R.J. Yoder, C.A. McElroy, Ö.D. Ekici, C.S. Callam, C.M. Hadad, J. Med. Chem. 61, 7034 (2018). https://doi.org/10.1021/acs.jmedchem.7b01620

    Article  CAS  PubMed  Google Scholar 

  11. V. Kumar, N. Upadhyay, V. Kumar, S. Sharma, Arab. J. Chem. 8, 624 (2015). https://doi.org/10.1016/j.arabjc.2014.12.007

    Article  CAS  Google Scholar 

  12. D.N. Kumar, A. Rajeshwari, S.A. Alex, M. Sahu, A.M. Raichur, N. Chandrasekaran, A. Mukherjee, RSC Adv. 5, 61998 (2015). https://doi.org/10.1039/C5RA10146H

    Article  CAS  Google Scholar 

  13. Y.L. Xu, F.Y. Li, F. Ndikuryayo, W.C. Yang, H.M. Wang, Sensors 18, 4281 (2018). https://doi.org/10.3390/s18124281

    Article  CAS  PubMed Central  Google Scholar 

  14. B. Bucur, F.D. Munteanu, J.L. Marty, A. Vasilescu, Biosensors 8, 27 (2018). https://doi.org/10.3390/bios8020027

    Article  CAS  PubMed Central  Google Scholar 

  15. D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Sensors 8, 1400 (2008). https://doi.org/10.3390/s80314000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L.W. Abad, M. Neumann, L. Tobias, L.O. Kutner, S. Jacobs, C. Cullen, Anal. Biochem. 310, 107 (2002). https://doi.org/10.1016/S0003-2697(02)00314-7

    Article  CAS  PubMed  Google Scholar 

  17. F. Arduini, F. Ricci, C.S. Tuta, D. Moscone, A. Amine, G. Palleschi, Anal. Chim. Acta 580, 155 (2006). https://doi.org/10.1016/j.aca.2006.07.052

    Article  CAS  PubMed  Google Scholar 

  18. F. Arduini, A. Amine, D. Moscone, G. Palleschi, Microchim. Acta 170, 193 (2010). https://doi.org/10.1007/s00604-010-0317-1

    Article  CAS  Google Scholar 

  19. E. Hasanoğlu Özkan, N. Kurnaz Yetim, H. Tümtürk, N. Sarı, Dalton Trans. 44, 16865 (2015). https://doi.org/10.1039/C5DT03004H

    Article  CAS  PubMed  Google Scholar 

  20. E. Hasanoğlu Özkan, N. Kurnaz Yetim, M. Gümüş, N. Sarı, A. Dişli, Maced J. Chem. Chem. En 36, 119 (2017). https://doi.org/10.20450/mjcce.2017.1178

    Article  CAS  Google Scholar 

  21. J. Cai, L.N. Zhou, E. Han, Anal. Sci. 30, 669 (2014). https://doi.org/10.2116/analsci.30.669

    Article  CAS  PubMed  Google Scholar 

  22. M.A. Barik, R. Deka, J.C. Dutta, IEEE Sens. J. 16, 280 (2016). https://doi.org/10.1109/JSEN.2015.2481604

    Article  Google Scholar 

  23. N. Kurnaz Yetim, N. Sarı, Maced J. Chem. Chem. En. 38, 215 (2019). https://doi.org/10.20450/mjcce.2019.1878

    Article  CAS  Google Scholar 

  24. N. Kurnaz Yetim, E. Hasanoğlu Özkan, C. Özcan, N. Sarı, J. Mol. Struct. 1222, 128931 (2020). https://doi.org/10.1016/j.molstruc.2020.128931

    Article  CAS  Google Scholar 

  25. D. Nartop, E. Hasanoğlu Özkan, N. Kurnaz Yetim, N. Sarı, J. Environ. Sci. Health, Part B (2020). https://doi.org/10.1080/03601234.2020.1797425

    Article  Google Scholar 

  26. N. Özdem, E. Hasanoğlu, N. Sarı, F. Arslan, H. Tümtürk, Macromol. Res. 22, 1282 (2014). https://doi.org/10.1007/s13233-014-2178-7

    Article  CAS  Google Scholar 

  27. G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, Biochem. Pharmacol. 7, 88 (1961). https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  28. K. Nakamoto, IR and Raman spectra of inorganic and coordination compounds. Willey (2006). https://doi.org/10.1002/0470027320.s4104

    Article  Google Scholar 

  29. S. Donmez, F. Arslan, N. Sarı, E. Hasanoğlu, H. Arslan, Biotechnol. Appl. Biochem. 64, 745 (2016). https://doi.org/10.1002/bab.1533

    Article  CAS  Google Scholar 

  30. S. Eşsiz, B. Sarı, Adv. Polym. Technol. 33, 21446 (2014). https://doi.org/10.1002/adv.21446

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Gazi University Research Fund (05/2014-02).

Author information

Authors and Affiliations

Authors

Contributions

Elvan Hasanoğlu Özkan contributed to formal analysis, investigation, methodology, writing-original draft, and visualization. Nurdan Kurnaz Yetim was involved in data curation and investigation. Dilek Nartop contributed to review and editing. Nurşen Sarı was involved in funding acquisition, supervision, and validation.

Corresponding author

Correspondence to Elvan Hasanoğlu Özkan.

Ethics declarations

Conflict of interest

The authors report no declarations of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanoğlu Özkan, E., Kurnaz Yetim, N., Nartop, D. et al. Ensuring traceability of organophosphate pesticides (OPs) through enzyme immobilized spheres. J IRAN CHEM SOC 18, 1749–1759 (2021). https://doi.org/10.1007/s13738-020-02147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02147-y

Keywords

Navigation