Skip to main content
Log in

Assessing the electrochemical performance of hierarchical nanostructured CuO@TiO2 as an efficient bi-functional electrocatalyst

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Fabrication and attractive performance of CuO nanoparticles coated onto TiO2 substrate (CuO@TiO2) as electrocatalysts for glucose and methanol electrooxidation are detailed in this article. These bi-functional electrocatalysts were prepared by impregnating (5–25 wt%) CuO nanoparticles onto nanosized TiO2 substrate and were characterized for morphology and composition. Cyclic voltammetry and electrochemical impedance spectroscopy provided a detailed account of their electrochemical capacity. All samples in CuO@TiO2 series were tested for probable electrocatalysis; however, 5CuO@TiO2 possessed significantly improved electrocatalytic activity for methanol and glucose electrooxidation. This can be attributed to the better conductivity of the electrocatalyst showing that electrocatalytic activity is limited by the amount of CuO loading on CuO@TiO2 electrocatalyst. The involvement of the Cu (II) to Cu (III) reversible redox couple was evident in the electrocatalytic oxidation. The sensitivity of 7.15 μA mM−1 cm−2 and a detection limit of 235.0 μM for glucose at a signal to noise ratio of 3 were obtained using 5CuO@ TiO2-modified glassy carbon electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Popovski, Electrocatalysts in the last 30 years–from precious metals to cheaper but sophisticated complex systems. Bull. Chem. Technol. Maced. 23, 101–112 (2004)

    Google Scholar 

  2. C. Qian, X. Guo, W. Zhang, H. Yang, Y. Qian, F. Xu, S. Qian, S. Lin, T. Fan, Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction. Microporous Mesoporous Mater. 277, 45–51 (2019)

    CAS  Google Scholar 

  3. X. Guo, C. Qian, R. Shi, W. Zhang, F. Xu, S. Qian, J. Zhang, H. Yang, A. Yuan, T. Fan, Biomorphic Co-N-C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction. Small 15, 1804855 (2019)

    Google Scholar 

  4. S. Thangavel, N. Raghavan, G. Venugopal, Magnetically Separable Iron Oxide‐Based Nanocomposite Photocatalytic Materials for Environmental Remediation, Photocatalytic Functional Materials for Environmental Remediation (Wiley, 2019), pp. 243–265

  5. R. Raliya, T.S. Chadha, K. Haddad, P. Biswas, Perspective on nanoparticle technology for biomedical use. Curr. Pharm. Des. 22, 2481–2490 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4, 1600337 (2017)

    Google Scholar 

  7. Y. Chen, Y. Wu, C. Liu, L. Guo, J. Nie, Y. Chen, T. Qiu, Low-temperature conversion of ammonia to nitrogen in water with ozone over composite metal oxide catalyst. J. Environ. Sci. 66, 265–273 (2018)

    Google Scholar 

  8. L. Liu, P. Concepción, A. Corma, Modulating the catalytic behavior of non-noble metal nanoparticles by inter-particle interaction for chemoselective hydrogenation of nitroarenes into corresponding azoxy or azo compounds. J. Catal. 369, 312–323 (2019)

    CAS  Google Scholar 

  9. Z.D. Mahmoudabadi, E. Eslami, One-step synthesis of CuO/TiO2 nanocomposite by atmospheric microplasma electrochemistry–Its application as photoanode in dye-sensitized solar cell. J. Alloy. Compd. 793, 336–342 (2019)

    CAS  Google Scholar 

  10. Q. Yang, M. Long, L. Tan, Y. Zhang, J. Ouyang, P. Liu, A. Tang, Helical TiO2 nanotube arrays modified by Cu–Cu2O with ultrahigh sensitivity for the nonenzymatic electro-oxidation of glucose. ACS Appl. Mater. Interfaces. 7, 12719–12730 (2015)

    CAS  PubMed  Google Scholar 

  11. A. Mujtaba, N.K. Janjua, Fabrication and electrocatalytic application of CuO@ Al2O3 hybrids. J. Electrochem. Soc. 162, H328–H337 (2015)

    CAS  Google Scholar 

  12. A. Mujtaba, N.K. Janjua, Electrochemical sensing platform based on CuO@ CeO2 hybrid oxides. J. Electroanal. Chem. 763, 125–133 (2016)

    CAS  Google Scholar 

  13. J.-H. Lee, J.-H. Kim, S.S. Kim, CuO–TiO2 p–n core–shell nanowires: sensing mechanism and p/n sensing-type transition. Appl. Surf. Sci. 448, 489–497 (2018)

    CAS  Google Scholar 

  14. N.L. Reddy, S. Emin, V.D.S. Kumari, Muthukonda Venkatakrishnan, CuO quantum dots decorated TiO2 nanocomposite photocatalyst for stable hydrogen generation. Ind. Eng. Chem. Res. 57, 568–577 (2018)

    CAS  Google Scholar 

  15. A.M. Kumar, A. Khan, R. Suleiman, M. Qamar, S. Saravanan, H. Dafalla, Bifunctional CuO/TiO2 nanocomposite as nanofiller for improved corrosion resistance and antibacterial protection. Prog. Org. Coat. 114, 9–18 (2018)

    CAS  Google Scholar 

  16. B. Khodadadi, A.Y. Faal, A. Shahvarughi, Tilia platyphyllos extract assisted green synthesis of CuO/TiO2 nanocomposite: application as a reusable catalyst for the reduction of organic dyes in water. J. Appl. Chem. Res. 13, 51–65 (2019)

    Google Scholar 

  17. S. Zhang, F. Chen, Y. Chi, Z. Dan, F. Qin, Non-enzymatic electrochemical glucose sensor based on Ti–Cu–O nanotubes prepared from TiCu amorphous alloy. J. Nanosci. Nanotechnol. 19, 3825–3831 (2019)

    CAS  PubMed  Google Scholar 

  18. S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, Q. Cai, A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor. Talanta 86, 157–163 (2011)

    CAS  PubMed  Google Scholar 

  19. J. Chen, L. Xu, R. Xing, J. Song, H. Song, D. Liu, J. Zhou, Electrospun three-dimensional porous CuO/TiO2 hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. Electrochem. Commun. 20, 75–78 (2012)

    CAS  Google Scholar 

  20. M. Niu, W. Xu, S. Zhu, Y. Liang, Z. Cui, X. Yang, A. Inoue, Synthesis of nanoporous CuO/TiO2/Pd-NiO composite catalysts by chemical dealloying and their performance for methanol and ethanol electro-oxidation. J. Power Sources 362, 10–19 (2017)

    CAS  Google Scholar 

  21. A. Dicks, D.A.J. Rand, Fuel Cell Systems Explained (Wiley, London, 2018)

    Google Scholar 

  22. R.-M. Yuan, H.-J. Li, X.-M. Yin, H.-Q. Wang, J.-H. Lu, L.-L. Zhang, Coral-like Cu-Co-mixed oxide for stable electro-properties of glucose determination. Electrochim. Acta 273, 502–510 (2018)

    CAS  Google Scholar 

  23. C. Chen, X.-L. Zhao, Z.-H. Li, Z.-G. Zhu, S.-H. Qian, A.J. Flewitt, Current and emerging technology for continuous glucose monitoring. Sensors 17, 182 (2017)

    Google Scholar 

  24. C. Canales, L. Gidi, G. Ramírez, Electrochemical activity of modified glassy carbon electrodes with covalent bonds towards molecular oxygen reduction. Int. J. Electrochem. Sci. 10, 1684–1695 (2015)

    CAS  Google Scholar 

  25. A. Shalan, M. Rashad, Y. Yu, M. Lira-Cantú, M. Abdel-Mottaleb, A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells. Appl. Phys. A 110, 111–122 (2013)

    CAS  Google Scholar 

  26. S.M. Solyman, S.A. Hassan, S.A. Sadek, H.S. Abdel-Samad, Redox-initiated bulk polymerization of methyl methacrylate using a CuO/TiO2 catalyst system. Int. J. Polym. Mater. 59, 475–487 (2010)

    CAS  Google Scholar 

  27. P.D. File, Joint committee on powder diffraction standards (ASTM, Philadelphia, PA, 1967), pp. 9–185

    Google Scholar 

  28. D. Reyes-Coronado, G. Rodriguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. De Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008)

    CAS  PubMed  Google Scholar 

  29. J. Huang, S. Wang, Y. Zhao, X. Wang, S. Wang, S. Wu, S. Zhang, W. Huang, Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation. Catal. Commun. 7, 1029–1034 (2006)

    CAS  Google Scholar 

  30. Z. Liu, C. Zhou, Improved photocatalytic activity of nano CuO-incorporated TiO2 granules prepared by spray drying. Prog. Nat. Sci. Mater. Int. 25, 334–341 (2015)

    CAS  Google Scholar 

  31. M. Liu, J. Chang, C. Yan, J. Bell, Comparative study of photocatalytic performance of titanium oxide spheres assembled by nanorods, nanoplates and nanosheets. Int. J. Smart Nano Mater. 3, 72–80 (2012)

    CAS  Google Scholar 

  32. S. Agarwala, M. Kevin, A. Wong, C. Peh, V. Thavasi, G. Ho, Mesophase ordering of TiO2 film with high surface area and strong light harvesting for dye-sensitized solar cell. ACS Appl. Mater. Interfaces. 2, 1844–1850 (2010)

    CAS  PubMed  Google Scholar 

  33. W.Z. Teo, A. Ambrosi, M. Pumera, Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem. Commun. 28, 51–53 (2013)

    CAS  Google Scholar 

  34. A. Ambrosi, M. Pumera, Redox-active nickel in carbon nanotubes and its direct determination. Chem. Eur. J. 18, 3338–3344 (2012)

    CAS  PubMed  Google Scholar 

  35. A.J. Bard, L.R. Faulkner, Fundamentals and Applications, Electrochemical Methods, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  36. B. Derkus, E. Emregul, C. Yucesan, K.C. Emregul, Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens. Bioelectron. 46, 53–60 (2013)

    CAS  PubMed  Google Scholar 

  37. S. Thiagarajan, M. Rajkumar, S.-M. Chen, Nano TiO2-PEDOT film for the simultaneous detection of ascorbic acid and diclofenac. Int. J. Electrochem. Sci. 7, 2109–2122 (2012)

    CAS  Google Scholar 

  38. S. Eloul, C. Batchelor-McAuley, R.G. Compton, Thin film-modified electrodes: a model for the charge transfer resistance in electrochemical impedance spectroscopy. J. Solid State Electrochem. 18, 3239–3243 (2014)

    CAS  Google Scholar 

  39. S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, S.X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4, 1855–1865 (2011)

    CAS  Google Scholar 

  40. B.A. Boukamp, A linear Kronig-Kramers transform test for immittance data validation. J. Electrochem. Soc. 142, 1885–1894 (1995)

    CAS  Google Scholar 

  41. A. Nafady, Electrochemistry with the extremely weak coordinating anions: using of carboranes [H-CB11X6Y5] − (X = H, Cl, Br; Y = H or Me) as supporting electrolyte anions. J. Electroanal. Chem. 755, 1–6 (2015)

    CAS  Google Scholar 

  42. E. Biçer, P. Çetinkaya, Electrochemical behaviour of the antibiotic drug novobiocin sodium on a mercury electrode. Croat. Chem. Acta 82, 573–582 (2009)

    Google Scholar 

  43. V. Oncescu, D. Erickson, High volumetric power density, non-enzymatic, glucose fuel cells. Sci. Rep. 3, 1226 (2013)

    PubMed  PubMed Central  Google Scholar 

  44. Z.D. Gao, J. Guo, N.K. Shrestha, R. Hahn, Y.Y. Song, P. Schmuki, Nickel hydroxide nanoparticle activated semi-metallic TiO2 nanotube arrays for non-enzymatic glucose sensing. Chem. A Eur. J. 19, 15530–15534 (2013)

    CAS  Google Scholar 

  45. R. Ding, J. Liu, J. Jiang, J. Zhu, X. Huang, Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor. Anal. Methods 4, 4003–4008 (2012)

    CAS  Google Scholar 

  46. A. Raziq, M. Tariq, R. Hussain, M.H. Mahmood, I. Ullah, J. Khan, M. Mohammad, Highly sensitive, non-enzymatic and precious metal free electrochemical glucose sensor based on Ni–Cu/TiO2 modified glassy carbon electrode. J. Serb. Chem. Soc. 83, 733–744 (2018)

    CAS  Google Scholar 

  47. J. Stanley, R.J. Sree, T. Ramachandran, T. Babu, B.G. Nair, Vertically aligned TiO2 nanotube arrays decorated with CuO mesoclusters for the nonenzymatic sensing of glucose. J. Nanosci. Nanotechnol. 17, 2732–2739 (2017)

    CAS  PubMed  Google Scholar 

  48. X. Wang, C.-Y. Ge, K. Chen, Y.X. Zhang, An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure. Electrochim. Acta 259, 225–232 (2018)

    CAS  Google Scholar 

  49. M.P. Sánchez, M. Barrera, S. González, R. Souto, R. Salvarezza, A. Arvia, Electrochemical behaviour of copper in aqueous moderate alkaline media, containing sodium carbonate and bicarbonate, and sodium perchlorate. Electrochim. Acta 35, 1337–1343 (1990)

    Google Scholar 

  50. M.M. El-Deeb, W.M. El Rouby, A. Abdelwahab, A.A. Farghali, Effect of pore geometry on the electrocatalytic performance of nickel cobaltite/carbon xerogel nanocomposite for methanol oxidation. Electrochim. Acta 259, 77–85 (2018)

    CAS  Google Scholar 

  51. A.A. Ensafi, B. Rezaei, Z. Mirahmadi-Zare, H. Karimi-Maleh, Highly selective and sensitive voltammetric sensor for captopril determination based on modified multiwall carbon nanotubes paste electrode. J. Braz. Chem. Soc. 22, 1315–1322 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The research work elucidated in this paper was carried out at laboratory provisions in Quaid-i-Azam University Islamabad. Authors greatly acknowledge NUST Islamabad for the SEM and EDX mapping facility. HEC Projects No. 1718 and 4768 are highly acknowledged for Gamry instrument.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayesha Mujtaba or Naveed Kausar Janjua.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1074 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mujtaba, A., Janjua, N.K., Yasin, T. et al. Assessing the electrochemical performance of hierarchical nanostructured CuO@TiO2 as an efficient bi-functional electrocatalyst. J IRAN CHEM SOC 17, 649–662 (2020). https://doi.org/10.1007/s13738-019-01797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01797-x

Keywords

Navigation