Skip to main content
Log in

Acacia concinna pods: a natural and new bioreductant for palladium nanoparticles and its application to Suzuki–Miyaura coupling

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, efficient, simple and greener approach is applied for the synthesis of palladium nanoparticles using aqueous extract of Acacia concinna, i.e., soap pods. The extract is mainly composed of saponin terpenoid which contains hydroxyl groups in its structure. This performs a versatile role as surfactant, reducing and stabilizing agent for palladium nanoparticles. The average particle size is found about 20 nm by using 30% extract (v/v) of A. concinna (soap-pod tree). Diverse techniques are used to characterize synthesized nanoparticles such as UV–visible, TEM and XPS analysis. The synthesized nanoparticles showed excellent activity in Suzuki–Miyaura coupling. The synthesized Pd NPs can be effectively reused for at least five times with excellent yield of product. Results confirmed this protocol as eco-benign, environmental-friendly, nontoxic and alternative to conventional other chemical methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.H. Lipshutz, S. Ghorai, Green Chem. 16, 3660–3679 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. B.H. Lipshutz, S. Ghorai, A.R. Abela, R. Moser, T. Nishikata, C. Duplais, A. Krasovskiy, R.D. Gaston, R.C. Gadwood, J. Org. Chem. 76, 4379–4391 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. B.H. Lipshutz, J. Matthey, Technol. Rev. 61, 196–202 (2017)

    CAS  Google Scholar 

  4. C.-J. Li, L. Chen, Chem. Soc. Rev. 35, 68–82 (2006)

    Article  PubMed  Google Scholar 

  5. A. Chanda, V.V. Fokin, Chem. Rev. 109, 725–748 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. T. Kitanosono, K. Masuda, P. Xu, S. Kobayashi, Chem. Rev. 118, 679–746 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. T. Dwars, E. Paetzold, G. Oehme, Angew. Chem. Int. Ed. 44, 7174–7199 (2005)

    Article  CAS  Google Scholar 

  8. G. La Sorella, G. Strukul, A. Scarso, Green Chem. 17, 644–683 (2015)

    Article  CAS  Google Scholar 

  9. N. Krause, Curr. Opin. Green Sustain. Chem. 7, 18–22 (2017)

    Article  Google Scholar 

  10. M.J. Scott, M.N. Jones, Biochim. Biophys. Acta 1508, 235–251 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. M.D. Kumar, K. Tamilarasan, S. Kaliappan, J.R. Banu, M. Rajkumar, S.H. Kim, Bioresour. Technol. 255, 116–122 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. O. Kaczerewska, B. Brycki, I. Ribosa, F. Comelles, M.T. Garcia, J. Ind. Eng. Chem. 59, 141–148 (2018)

    Article  CAS  Google Scholar 

  13. S. De, S. Malik, A. Ghosh, R. Saha, B. Saha, RSC Adv. 5, 65757–65767 (2015)

    Article  CAS  Google Scholar 

  14. P.S. Piispanen, M. Persson, P. Claesson, T. Norin, J. Surfactants Deterg. 7, 161–167 (2004)

    Article  CAS  Google Scholar 

  15. S. Deb Barma, B. Banerjee, K. Chatterjee, S. Paria, ACS Sustain. Chem. Eng. 6, 3615–3623 (2018)

    Article  CAS  Google Scholar 

  16. H.V. Chavan, B.P. Bandgar, A.C.S. Sustain, Chem. Eng. 1, 929–936 (2013)

    CAS  Google Scholar 

  17. M. Rajakohila, V.N. Meena, L.A.M. Syndia, P.N. Prasad, V.N. Ariharan, Res. J. Pharm. Biol. Chem. Sci. 3, 420–424 (2012)

    Google Scholar 

  18. K. Takagi, E. Park, H. Kato, Chem. Pharm. Bull. 28, 1183–1188 (1980)

    Article  CAS  PubMed  Google Scholar 

  19. K.R. Aneja, J. Radhika, C. Sharma, Ethnobot. Leafl. 14, 402–412 (2010)

    Google Scholar 

  20. V. Reddy, R.S. Torati, S. Oh, C. Kim, Ind. Eng. Chem. Res. 52, 556–564 (2013)

    Article  CAS  Google Scholar 

  21. S. Balakrishnan, S. Varughese, A.P. Deshpande, Tenside Surfact. Det. 43, 262–268 (2006)

    Article  CAS  Google Scholar 

  22. T. Baran, Carbohydr. Polym. 195, 45–52 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. T. Baran, Ultrason. Sonochem. 45, 231–237 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. T. Baran, N. Yılmaz Baran, A. Menteş, J. Mol. Struct. 1160, 154–160 (2018)

    Article  CAS  Google Scholar 

  25. T. Baran, N. Yılmaz Baran, A. Menteş, Appl. Organomet. Chem. 32, e4075 (2018)

    Article  CAS  Google Scholar 

  26. T. Baran, İ. Sargın, M. Kaya, P. Mulerčikas, S. Kazlauskaitė, A. Menteş, Chem. Eng. J. 331, 102–113 (2018)

    Article  CAS  Google Scholar 

  27. T. Baran, J. Colloid Interface Sci. 496, 446–455 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. T. Baran, I. Sargin, A. Menteş, M. Kaya, Appl. Catal. A 523, 12–20 (2016)

    Article  CAS  Google Scholar 

  29. D.S. Gaikwad, K.A. Undale, D.B. Patil, D.M. Pore, A.A. Kamble, Res. Chem. Intermediate 44, 265–275 (2018)

    Article  CAS  Google Scholar 

  30. M.A. Gafur, T. Obata, F. Kiuchi, Y. Tsuda, Chem. Pharm. Bull. 45, 620–625 (1997)

    Article  Google Scholar 

  31. A.S.R. Anjaneyulu, M. Bapuji, L.R. Row, A. Sree, Phytochemistry 18, 463–466 (1979)

    Article  CAS  Google Scholar 

  32. D.S. Gaikwad, D.M. Pore, Synlett 23, 2631–2634 (2012)

    Article  CAS  Google Scholar 

  33. J.D. Patil, S.N. Korade, S.A. Patil, D.S. Gaikwad, D.M. Pore, RSC Adv. 5, 79061–79069 (2015)

    Article  CAS  Google Scholar 

  34. L. Tao, Y. Xie, C. Deng, J. Li, Chin. J. Chem. 27, 1365–1373 (2009)

    Article  CAS  Google Scholar 

  35. W. Han, C. Liu, Z.-L. Jin, Org. Lett. 9, 4005–4007 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Y. Cui, I. Biondi, M. Chaubey, X. Yang, Z. Fei, R. Scopelliti, C.G. Hartinger, Y. Li, C. Chiappe, P.J. Dyson, Phys. Chem. Chem. Phys. 12, 1834–1841 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. P.K. Mandali, D.K. Chand, Catal. Commun. 31, 16–20 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

One of authors DSG gratefully acknowledges Department of Science and Technology, New Delhi, India, for financial assistance under Start-up Research Grant [No. SB/FT/CS-145/2014].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Gaikwad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, D.S., Undale, K.A., Kalel, R.A. et al. Acacia concinna pods: a natural and new bioreductant for palladium nanoparticles and its application to Suzuki–Miyaura coupling. J IRAN CHEM SOC 16, 2135–2141 (2019). https://doi.org/10.1007/s13738-019-01682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01682-7

Keywords

Navigation