Skip to main content
Log in

A theoretical study on the dynamics of gas-phase reaction of methyl cation with atomic oxygen

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The dynamics and kinetics of the reaction of CH3+ cation with atomic oxygen in its lowest triplet and singlet states in the presence of N2 molecules as the bath gas is theoretically investigated. The potential energies over both surfaces at the CCSD(T)/aug-cc-pVTZ level of theory are explored. Both singlet and triplet surfaces characterize by barrierless initiation step. The entrance channel to form the energized adducts are governed by the capture probability once the centrifugal barrier is surmounted. Multiwell-multichannel mechanisms are found for both singlet and triplet potential energy surfaces. One-dimensional chemical master equation is solved to explore the dynamics and kinetics of the title reaction. The fractional populations of the stationary points as function of time are analyzed to determine the role of the energized intermediates on the dynamics of the title reaction. No significant temperature or pressure dependence for the title reaction was observed over a wide range of temperature (300–3000 K) and pressure (0.1–4.5 atm). The results indicate cis and trans-HCOH+, CH2O+, and H atom are the major products for both surfaces. CVT method was used to explore the importance of tunneling in hydrogen transfer isomerization reactions of CH2O+ to trans-HCOH+ and HOC+ to HCO+ using small-curvature approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Wesley, Huntress, Jr., Laboratory studies of bimolecular reactions of positive ions in interstellar clouds, in comets, and in planetary atmospheres of reducing composition. Astrophys. J. Suppl. Ser. 33, 495–514 (1977)

    Article  Google Scholar 

  2. M. Oppenheimer, J. Ap. 196, 251 (1975)

    Article  CAS  Google Scholar 

  3. V.G. Anicich, W.T. Huntress, Jr., A survey of bimolecular ion-molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds. Astrophys. J. Suppl. Ser. 62, 553–672 (1986)

    Article  CAS  Google Scholar 

  4. J.L. Beauchamp, Ann. Rev. Phys. Chem. 22, 527 (1971)

    Article  CAS  Google Scholar 

  5. D.K. Bohme, Chemical ionization in flames, in Kinetics of Ion-Molecule Reactions NATO Advanced Study Institutes Series (Series B: Physics), ed. by P. Ausloos, vol 40 (Springer, Boston, MA, 1979)

    Google Scholar 

  6. V.G. Anicich, W.T. Huntress, J.H. Futrell, Chem. Phys. Lett. 40, 233 (1976)

    Article  CAS  Google Scholar 

  7. S.E. Buttrill, J.K. Kim, W.T. Huntress, P. LeBreton, A. Williamson, J. Chem. Phys. 61, 2122 (1974)

    Article  CAS  Google Scholar 

  8. L.A. Capone, R.C. Whitten, J. Dubach, S.S. Prasad, W.T. Huntress, Icarus 28, 367 (1976)

    Article  CAS  Google Scholar 

  9. A. Dalgarno, J.H. Black, Rept. Progr. Phys. 39, 573 (1976)

    Article  CAS  Google Scholar 

  10. A. Dalgarno, R.A. McCray, J. Ap. 181, 95 (1973)

    Article  CAS  Google Scholar 

  11. F.C. Fehsenfeld, D.B. Dunkin, E.E. Ferguson, D.L. Albritton, Ap. J. (Lett.) 183, L25 (1973)

    Article  CAS  Google Scholar 

  12. D. Schroder, H. Schwarz, Gas-phase activation of methane by ligated transition-metal cations. PNAS 105, 18114–18119 (2008)

    Article  PubMed  Google Scholar 

  13. Y. Tong, J.H. Lunsford, Mechanistic and kinetic studies of the reactions of gas-phase methyl radicals with metal oxides. J. Am. Chem. Soc. 113, 4741–4746 (1991)

    Article  CAS  Google Scholar 

  14. X. Zhao, G.K. Koyanagi, D.K. Bohme, Reactions of methyl fluoride with atomic transition-metal and main-group cations: gas-phase room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 110, 10607–10618 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. J.C. Védrine, Heterogeneous catalysis on metal oxides. Catalysts 7, 341 (2017)

    Article  CAS  Google Scholar 

  16. A.A. Viggiano, R.A. Morris, J.F. Paulson, E. Ferguson, Deuterated methyl cation reactions with atomic oxygen. Chem. Phys. Lett. 148, 296–298 (1988)

    Article  CAS  Google Scholar 

  17. E.E. Ferguson Atomic data nuclear data tables, ed. by P. Ausloos. Proc. First NATO Conference on lon-Molecule Interactions, Biarritz, France, vol 12, 24 June–6 July 1973

  18. E. Herbst, D.K. Bohme, J.D. Payzant, H. Schiff, I. Ap. J. 201, 603 (1975)

    Article  CAS  Google Scholar 

  19. F.C. Fehsenfeld, Ion reactions with atomic oxygen and atomic nitrogen of astrophysical importance. Astrophys. J. 209, 638–639 (1976)

    Article  CAS  Google Scholar 

  20. A. Dalgarno, T. DeJong, M. Oppenheimer, J.H. Black, Ap. J. (Lett.), 192, L37 (1974)

    Article  CAS  Google Scholar 

  21. V.G.J. Anicich, Phys. Chem. Ref. Data 22, 1469 (1993)

    Article  CAS  Google Scholar 

  22. E. Herbst, Annu. Rev. Phys. Chem. 46, 27 (1995)

    Article  CAS  Google Scholar 

  23. J.M.C. Rawlings, S.D. Taylor, D.A. Williams, MNRAS 313, 461 (2000)

    Article  CAS  Google Scholar 

  24. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al., Gaussian 09Wrevision A. 02 (Gaussian Inc, Wallingford, 2009)

    Google Scholar 

  25. T.J. Lee, P.R. Taylor, A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem 23, 199–207 (1989)

    CAS  Google Scholar 

  26. I.M. Alecu, D.G. Truhlar, Computational study of the reactions of methanol with the hydroperoxyl and methyl Radicals. 1. Accurate thermochemistry and barrier heights. J. Phys. Chem. A 115, 2811–2829 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Active Thermochemical Tables. http://atct.anl.gov/. Accessed 20 Oct 2018

  28. J.C. Rienstra-Kiracofe, W.D. Allen, H.F. Schaefer, The C2H5 + O2 reaction mechanism: high-level ab initio characterizations. J. Phys. Chem. A 104, 9823 (2000)

    Article  CAS  Google Scholar 

  29. J. Peiro-Garcia, I. Nebot-Gil, Ab initio study on the mechanism of the atmospheric reaction OH + O3→HO2 + O2. Chem. Phys. Chem 4, 843–847 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. J. Peiro-Garcia, I. Nebot-Gil, Ab Initio study of the mechanism of the atmospheric reaction: NO2 + O3→ NO3 + O2. J. Comput. Chem. 24, 1657–1663 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. M. Martinez-Avila, J. Peiro-Garcia, V.M. Ramírez-Ramírez, I. Nebot-Gil. Ab initio study on the mechanism of the HCO + O2→HO2 + co reaction. Chem. Phys. Lett. 370, 313–318 (2003)

    Article  CAS  Google Scholar 

  32. N. Lambert, N. Kaltsoyannis, S.D. Price, J. Zabka, Z. Herman, Bond-forming reactions of dications with molecules: a computational and experimental study of the mechanisms for the formation of HCF2 + from CF2 + and H2. J. Phys. Chem. A 110, 2898–2905 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. S.R. Miller, N.E. Schultz, D.G. Truhlar, D.G. Leopold, A study of the ground and excited states of Al3 and Al3–. II. Computational analysis of the 488 nm anion photoelectron pectrumand a reconsideration of the Al3 bond dissociation energy. J. Chem. Phys. 130, 024304–024326 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. S.H. Robertson, M.J. Pilling, L.C. Jitariu, I.H. Hillier, Master equation methods for multiple well systems: application to the 1-, 2-pentyl system. Phys. Chem. Chem. Phys. 9, 4085–4097 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. S.H. Robertson, D.R. Glowacki, C.-H. Liang, C. Morley, R. Shannon, M. Blitz, P.W. Seakins, M.J. Pilling, MESMER (Master Equation Solver for Multi-Energy Well Reactions), an object oriented C + + program implementing master equation methods for gas phase reactions with arbitrary multiple wells 2008–2013. http://sourceforge.net/projects/mesmer. Accessed 26 Nov 2018

  36. D.R. Glowacki, C.-H. Liang, C. Morley, M.J. Pilling, S.H. Robertson, MESMER: an open-source master equation solver for multi-energy well reactions. J. Phys. Chem. A 116, 9545–9560 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. R.J. Shannon, R.L. Caravan, M.A. Blitz, D.E. Heard, A combined experimental and theoretical study of reactions between the hydroxyl radical and oxygenated hydrocarbons relevant to astrochemical environments. Phys. Chem. Chem. Phys. 16, 3466–3478 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. J.A. Miller, S.J. Klippenstein, Master equation methods in gas phase chemical kinetics. J. Phys. Chem. A 110, 10528–10544 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. J.T. Bartis, B. Widom, Stochastic models of the inter conversion of three or more chemical species. J. Chem. Phys. 60, 3474–3482 (1974)

    Article  CAS  Google Scholar 

  40. R.G. Gilbert, S.C. Smith. Theory of Unimolecular and Recombination Reactions (Blackwell Scientific, Oxford, 1990)

    Google Scholar 

  41. P.J. Robinson, K.A. Holbrook. Unimolecular reactions. (Wiley-Interscience, New York, 1972)

    Google Scholar 

  42. W. Forst, Theory of Unimolecular Reactions (Elsevier, Amsterdam, 2012)

    Google Scholar 

  43. T. Baer, W.L. Hase, Unimolecular reaction dynamics: theory and experiments (Oxford University Press, Oxford, 1996)

    Google Scholar 

  44. J.W. Davies, N.J.B. Green, M.J. Pilling. The testing of models for unimolecular decomposition via inverse laplace transformation of experimental recombination data. Chem. Phys. Lett. 126, 373–379 (1986)

    Article  CAS  Google Scholar 

  45. L.A. Curtiss, L.D. Kock, Energies of CH2OH, CH3O, and related compounds. J. Chem. Phys. 95, 4040–4043 (1991)

    Article  CAS  Google Scholar 

  46. P.C. Burgers, A.A. Mommers, J.L. Holmes, Ionized, Oxycarbenes, [COH]+, [HCOH]+,[C(OH),]+, [HCO2]+, and [COOH]+, their generation, identification, heat of formation, and dissociation characteristics. J. Am. Chem. Soc. 105, 5977–5979 (1983)

    Article  Google Scholar 

  47. J.C. Corchado, Y.Y. Chuang, E.L. Coitino, D.G. Truhlar, GAUSSRATE, version 9.1/P9.1-G03/G98/G94; Department of Chemistry and Supercomputer Institute (University of Minnesota, Minneapolis, 2003)

    Google Scholar 

  48. D. Lu, T.N. Truong, V.S. Melissas, G.C. Lynch, Y.-P. Liu, B.C. Garrett, R. Steckler, A.D. Isaacson, S.N. Rai, G. Hancock, J.G. Lauderdale, T. Joseph, D.G. Truhlar, POLYRATE 4: a new version of a computer program for the calculation of chemical reaction rates for polyatomics. Comp. Phys. Comm. 71, 235 (1992)

    Article  CAS  Google Scholar 

  49. J.A. Miller, Faraday discuss, combustion chemistry: elementary reactions to macroscopic processes. R. Soc. Chem. 119, 461–475 (2001)

    CAS  Google Scholar 

  50. J.R. Barker, R.E. Weston, J. Phys. Chem. A 114, 10619–10633 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. K.L. Gannon, M.A. Blitz, C.H. Liang, M.J. Pilling, P.W. Seakins, D.R. Glowacki, J. Phys. Chem. A 114, 9413–9424 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from the Research Council of Shiraz University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hosein Mousavipour.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13738_2018_1558_MOESM1_ESM.docx

In Supporting Information file the IRC graphs for the 15 corresponding reactions are included. The variation of vibrations along the reaction coordinate and also corresponding MEPs and Ground-state vibrationally adiabatic potentials VGa(s) for reactions R7, R9, and R11 are included. (DOCX 459 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S., Mousavipour, S.H. A theoretical study on the dynamics of gas-phase reaction of methyl cation with atomic oxygen. J IRAN CHEM SOC 16, 807–825 (2019). https://doi.org/10.1007/s13738-018-1558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1558-x

Keywords

Navigation