Skip to main content
Log in

An electrochemical ceruloplasmin aptasensor using a glassy carbon electrode modified by diazonium-functionalized multiwalled carbon nanotubes

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Fast and accurate determination of biological compounds in human fluids plays a crucial role in clinical analysis. Low levels and high levels of ceruloplasmin (Cp) in serum cause several diseases such as Wilson’s disease, therefore, its accurate determination in human fluids is important. A selective and sensitive electrochemical biosensor was developed for Cp detection using a Cp-specific recognition aptamer. The proposed aptasensor was based on a glassy carbon electrode modified with diazonium-functional multiwall carbon nanotubes. The aptamer was linked to the electrode surface using electrochemical approach, followed by chemical immobilization of aminated-aptamer. All fabrication steps were accompanied by changes to the electrochemical parameters. The binding of Cp to aptamer was monitored by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. The effective parameters were optimized. The calibration curve for Cp concentration was linear at 0.02–3.0 ng mL−1 and 3.0–80.0 ng mL−1 with a detection limit (signal-to-noise ratio of 3) of 3.7 pg mL−1. The fabricated aptasensor can serve as a powerful sensor for rapid diagnosis of Cp in the human serum sample and shows a great potential for practical bioapplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Sun, Q. Han, D. Wang, W. Xu, W. Wang, W. Zhao, M. Zhou, Anal. Chim. Acta 850, 33 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. T. Hermann, D.J. Patel, Science 287, 820 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. E. Luzi, M. Minunni, S. Tombelli, M. Mascini, TrAC Trend. Anal. Chem. 22, 810 (2003)

    Article  CAS  Google Scholar 

  4. Y. Seok Kim, N.H. Ahmad Raston, M. Bock Gu, Biosens. Bioelectron. 76, 2 (2016)

    Article  CAS  Google Scholar 

  5. X. Liu, Z. Cheng, H. Fan, S. Ai, R. Han, Electrochim. Acta 56, 6266 (2011)

    Article  CAS  Google Scholar 

  6. N.O. Fischer, T.M. Tarasow, J.B.H. Tok, Anal. Biochem. 373, 121 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. H.-J. Lee, B.C. Kim, K.-W. Kim, Y.K. Kim, J. Kim, M.-K. Oh, Biosens. Bioelectron. 24, 3550 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. E.J. Cho, L. Yang, M. Levy, A.D. Ellington, J. Am. Chem. Soc. 127, 2022 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. M. Liu, J. Song, S. Shuang, C. Dong, J.D. Brennan, Y. Li, ACS Nano 8, 5564 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. L. Yang, C.W. Fung, E.J. Cho, A.D. Ellington, Anal. Chem. 79, 3320 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. L. Zhou, L.-J. Ou, X. Chu, G.-L. Shen, R.-Q. Yu, Anal. Chem. 79, 7492 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. K.-J. Huang, Y.-J. Liu, G.-W. Shi, X.-R. Yang, Y.-M. Liu, Sens. Actuators B 201, 579 (2014)

    Article  CAS  Google Scholar 

  13. G.X. Pan, X.H. Xia, F. Cao, P.S. Tang, H.F. Chen, Electrochem. Commun. 34, 146 (2013)

    Article  CAS  Google Scholar 

  14. Z.A. ALOthman, M. Habila, E. Yilmaz, M. Soylak, Microchim. Acta 177, 397 (2012)

    Article  CAS  Google Scholar 

  15. R.J. Chen, Y. Zhang, D. Wang, H. Dai, J. Am. Chem. Soc. 123, 3838 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. X. Liu, Y. Li, J. Zheng, J. Zhang, Q. Sheng, Talanta 81, 1619 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. L. Zhou, D.-J. Li, L. Gai, J.-P. Wang, Y.-B. Li, Sens. Actuators B 162, 201 (2012)

    Article  CAS  Google Scholar 

  18. L. Bai, R. Yuan, Y. Chai, Y. Yuan, L. Mao, Y. Zhuo, Analyst 136, 1840 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. B. Garcinuño, I. Ojeda, M. Moreno-Guzmán, A. González-Cortés, P. Yáñez-Sedeño, J.M. Pingarrón, Talanta 118, 61 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. O.Y. Kim, M.-J. Shin, J. Moon, J.H. Chung, Clin. Biochem. 44, 351 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. I. Ojeda, M. Moreno-Guzmán, A. González-Cortés, P. Yáñez-Sedeño, J.M. Pingarrón, Electroanalysis. 25, 2166 (2013)

    Article  CAS  Google Scholar 

  22. B.L. Somani, V. Ambade, Clin. Biochem. 40, 571 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. J.D. Korman, I. Volenberg, J. Balko, J. Webster, F.V. Schiodt, R.H. Squires, R.J. Fontana, W.M. Lee, M.L. Schilsky, Pediatric and Adult Acute Liver Failure Study Groups, Hepatology 48, 1167 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. N. Zhao, L. Jin, G. Fei, Z. Zheng, C. Zhong, Parkinson Relat. Disord. 20, 1177 (2014)

    Article  Google Scholar 

  25. T.C. Larkin, T.A. Fingleton, M. McCusker, M. Cassidy, G. Gunzer, C.A. Lepp, E. Gamboa, Clin. Lab. 50, 193 (2004)

    CAS  PubMed  Google Scholar 

  26. E.P. Gil, R.M.-M. Carra, A.S. Misiego, Anal. Chim. Acta 315, 69 (1995)

    Article  Google Scholar 

  27. V. Lopez-Avila, O. Sharpe, W.H. Robinson, Anal. Bioanal. Chem. 386, 180 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. F.W. Sunderman Jr., S. Nomoto, Clin. Chem. 16, 903 (1970)

    CAS  PubMed  Google Scholar 

  29. K.H. Schosinsky, H.P. Lehmann, M.F. Beeler, Clin. Chem. 20, 1556 (1974)

    CAS  PubMed  Google Scholar 

  30. H. Wang, D. Li, Z. Wu, G. Shen, R. Yu, Talanta 62, 199 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. M. Hamidi, N. Zarei, Drug Test Anal. 1, 214 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. T. Madrakian, E. Haghshenas, A. Afkhami, Sens. Actuators B 193, 451 (2014)

    Article  CAS  Google Scholar 

  33. J. Wang, S. Li, Y. Zhang, Electrochim. Acta 55, 4436 (2010)

    Article  CAS  Google Scholar 

  34. R.N. Hegde, N.P. Shetti, S.T. Nandibewoor, Talanta 79, 361 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. M. Moreno-Guzmán, I. Ojeda, R. Villalonga, A. González-Cortés, P. Yáñez-Sedeño, J.M. Pingarrón, Biosens. Bioelectron. 35, 82 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. C. Ocaña, S. Lukic, M. del Valle, Microchim. Acta 182, 2045 (2015)

    Article  CAS  Google Scholar 

  37. C. Ocaña, M. del Valle, Microchim. Acta 181, 355 (2014)

    Article  CAS  Google Scholar 

  38. C. Ocaña, A. Hayat, R.K. Mishra, A. Vasilescu, M. del Valle, J.-L. Marty, Bioelectrochemistry 105, 72 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. E. Matysiak, B. Wagner, M. Bystrzejewski, I.P. Grudzinski, A.M. Nowicka, Sens. Actuators B 221, 1461 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Bu-Ali Sina University Research Council and Center of Excellence in Department of Environmentally Friendly Method for Chemical Synthesis (CEDEFMCS) for providing support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyebeh Madrakian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghshenas, E., Madrakian, T., Afkhami, A. et al. An electrochemical ceruloplasmin aptasensor using a glassy carbon electrode modified by diazonium-functionalized multiwalled carbon nanotubes. J IRAN CHEM SOC 16, 593–602 (2019). https://doi.org/10.1007/s13738-018-1533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1533-6

Keywords

Navigation