Skip to main content
Log in

Colorimetric determination of iodine based on highly selective and sensitive anti-aggregation assay

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Iodine as a mineral has great effects on public health; accordingly, there has been an urgent request for iodine selective and sensitive sensor. A colorimetric assay based on the anti-aggregation exclusive feature of gold nanoparticles is presented in this study. The proffered sensor was manufactured in regard to the interaction between thiosulfate and gold nanoparticles, and the forceful inactivation of thiosulfate by iodine. Different concentrations of iodine lead to differential inactivation of thiosulfate, which is in charge of obvious color alteration of AuNPs from blue to red. The quantification of iodine is acquired in relation to the alteration in the surface plasmon resonance absorption of the gold nanoparticles. Under the optimum condition, the limit of detection is 1.36 nmol L−1 with the linear range from 3 to 80 nmol L−1. Further utilization of the proposed colorimetric method to determine iodine in human serum presented satisfying consequence concerning selectivity and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.R. Stoddard, I.I.,A.D. Brooks, B.A. Eskin, G.J. Johannes, Int. J. Med. Sci. 5, 189 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. S. Venturi, C.E. Grotkowski, C.P. Connolly, W.R. Ghent, Breast. 10, 379 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. V.R. Preedy, G.N. Burrow, R. Watson, Comprehensive Handbook of Iodine, 1st edn. (Elsevier, Amsterdam, 2009), pp. 215–220

    Google Scholar 

  4. C.C. Abnet, J.H. Fan, F. Kamangar, X.D. Sun, P.R. Taylor, J.S. Ren, S.D. Mark, P. Zhao, J.F. Fraumeni Jr, Y.L. Qiao, S.M. Dawsey, Int. J. Cancer 119, 1508 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. R. Behrouzian, N. Aghdami, Health J. 10, 921 (2004)

    CAS  Google Scholar 

  6. M.B. Zimmermann, P.L. Jooste, C.S. Pandav, Lancet 372, 1251 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. R.H. Verheesen, C.M. Schweitzer, Med. Hypotheses 71, 645 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. World Health Organization (WHO), United Nations Children’s Fund, and the International Council for the Control of Iodine Deficiency Disorders (ICCIDD). Assessment of Iodine Deficiency Disorders and Monitoring their Elimination: A Guide for Programme Managers. 3rd edn. (World Health Organization, Geneva, 2007) (ISBN: 9789241595827)

    Google Scholar 

  9. C.C. Johnson, The geochemistry of iodine and its application to environmental strategies for reducing the risks from iodine deficiency disorders. British Geological Survey, commissioned report, CR/03/057N, Keyworth, Nottingham (2003)

  10. U. Kapil, Sultan Qaboos Univ. Med. J. 7, 267 (2007)

    PubMed  PubMed Central  Google Scholar 

  11. T. Hirokawa, M. Yoshioka, H. Okamoto, A.R. Timerbaev, G. Blaschke, J. Chromatogr. B 811, 165 (2004)

    Article  CAS  Google Scholar 

  12. U. Nitschke, D.B. Stenge, Food Chem. 172, 326 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. H.J. Reid, A.A. Bashammakh, P.S. Goodall, M.R. Landon, M.R.C. O’Connor, B.L. Sharp, Talanta 75, 189 (2008)

    CAS  PubMed  Google Scholar 

  14. V.C. Costa, R.S. Picoloto, C.A. Hartwig, P.A. Mello, E.M. Flores, M.F. Mesko, Anal. Bioanal. Chem. 407, 7957 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. A. Błażewicz, M. Klatka, W. Dolliver, R. Kocjan, J. Chromatogr. B 962, 141 (2014)

    Article  CAS  Google Scholar 

  16. M. Tubino, J.A. Aricetti, Fuel 103, 1158 (2013)

    Article  CAS  Google Scholar 

  17. J.V. Dyke, P.K. Dasgupta, A.B. Kirk, Talanta 79, 235 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. M.D. Huang, H. Becker-Ross, S. Florek, M. Okruss, B. Welz, S. Morés, Spectrochim. Acta B 64, 697 (2009)

    Article  CAS  Google Scholar 

  19. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chem. Rev. 112, 2739 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Zayats, R. Baron, I. Popov, I. Willner, Nano Lett. 5, 21 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. M.-C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. L. Yu, A. Andriola, A review. Talanta 82, 869 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. F. Keshvari, M. Bahram, Kh Farhadi, J. Iran. Chem. Soc. 13, 1411 (2016)

    Article  CAS  Google Scholar 

  24. M. Jafari, J. Tashkhourian, G. Absalan, J. Iran. Chem. Soc. 14, 1253 (2017)

    Article  CAS  Google Scholar 

  25. M. Mazloum-Ardakani, Z. Dehghani, A. Khoshroo, J. Iran. Chem. Soc. (2018). https://doi.org/10.1007/s13738-018-1303-5

    Article  Google Scholar 

  26. S. Dorostkar, B. Hemmateenejad, J. Iran. Chem. Soc. 10, 513 (2013)

    Article  CAS  Google Scholar 

  27. M.R. Hormozi-Nezhad, S. Abbasi-Moayed, Talanta 129, 227 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Y. Li, P. Wu, H. Xu, Z. Zhang, X. Zhong, Talanta 84, 508 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. Y.L. Li, Y.M. Leng, Y.J. Zhang, T.H. Li, Z.Y. Shen, A.G. Wu, Sens. Actuator B Chem 200, 140 (2014)

    Article  CAS  Google Scholar 

  30. F. Keshvari, M. Bahram, Kh Farhadi, Chin. Chem. Lett. 27, 847 (2016)

    Article  CAS  Google Scholar 

  31. G. Frens, Nature Phys. Sci. 241, 20 (1973)

    Article  CAS  Google Scholar 

  32. G. Senanayake, Hydrometallurgy 77, 287 (2005)

    Article  CAS  Google Scholar 

  33. T. Zh. Kormosh, Savchuk, Mater. Sci. Eng. C 32, 2286 (2012)

    Article  CAS  Google Scholar 

  34. M.C. Yebra, M.H. Bollain, Talanta 82, 828 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. S.D. Nikolic, J.J. Mutic, A.D. Lolic, D.D. Manojlovic, Anal. Sci. 21, 525 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. G. Landon, C. Bouvier-Capely, A. Legrand et al., Am. J. Anal. Chem. 8, 245 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Bahram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pournaghi, A., Keshvari, F. & Bahram, M. Colorimetric determination of iodine based on highly selective and sensitive anti-aggregation assay. J IRAN CHEM SOC 16, 143–149 (2019). https://doi.org/10.1007/s13738-018-1491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1491-z

Keywords

Navigation