Skip to main content
Log in

Synthesis and exploration of in-silico and in-vitro α-glucosidase and α-amylase inhibitory activities of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)arylamides

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In a search for α-amylase and α-glucosidase inhibitors to treat type II diabetes, a new series of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)arylamides were synthesized from 3-acetyl-2-methyl-4-phenylquinolines. Initially, nitro function of 1-(2-methyl-6-nitro-4-phenylquinolin-3-yl) ethanone was converted into the corresponding amine by grinding it with zinc dust and ammonium chloride (reducing agent) which in turn successfully converted into the N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl) arylamides by treating it with coupling reagents such as EDC, HATU, and DCC. All the synthesized compounds were found to afford excellent yields with HATU, moderate in EDC, and very less in DCC and hence, HATU was considered as a suitable coupling reagent. These analogs are structurally characterized by NMR, NMR-DEPT, and HRMS. All the synthesized compounds were evaluated for in-silico and in-vitro α-glucosidase and α-amylase inhibitory activity using acarbose as standard and all the compounds showed positive results by in-silico and in-vitro α-amylase inhibition assay. Among the tested compounds, compound 5c and 5d in α-glucosidase as well as in α-amylase are found to have least binding energy value. These compounds found to form more stable ligand–receptor complex amongst other compounds. In addition, in experimental part, also the compounds 5c and 5d exhibited 56.90 ± 0.77% and 59.46 ± 0.61% of the higher potent α-glucosidase inhibitory activity with IC50 values 171.75 ± 3.95 µmol/mL and 171.67 ± 1.57 µmol/mL significantly (p < 0.05) compared to the remaining seven test samples. And similarly, the compound 5c and 5d possessed α-amylase inhibitory activity at a concentration of 100 µg/mL (55.42 ± 0.42% and 55.42 ± 1.14%) with IC50 values 138.92 ± 4.44 µmol/mL and 158.78 ± 2.34 µmol/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Shori, J. Food. Drug. Anal. 23, 609–618 (2014)

    Article  CAS  Google Scholar 

  2. S.A. Adefegha, G. Oboh, O.M. Adefegha, A.A. Boligon, M.L. Athayde, J. Sci. Food Agric. 94, 2726–2737 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. Z. Gong, Y. Peng, J. Qiu, A. Cao, G. Wang, Z. Peng, Molecules 22, 1555–1566 (2017)

    Article  CAS  PubMed Central  Google Scholar 

  4. S.R. Joshi, E. Standl, N. Tong, P. Shah, S. Kalra, R. Rathod, Expert Opin. Pharmacother. 16, 1959–1981 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. R. Pili. J. Chang, R.A. Partis, R.A. Mueller, F.J. Chrest, A. Passaniti, Cancer Res. 55, 2920–2926 (1995)

    CAS  PubMed  Google Scholar 

  6. J. Rawlings, H. Lomas, A.W. Pilling, M.J.R. Lee, D.S. Alonzi, J.S.S. Rountree, S.F. Jenkinson, G.W.J. Fleet, R.A. Dwek, J.H. Jones, Chem. Bio. Chem. 10, 1101–1105 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. N. Zitzmann, A.S. Mehta, S. Carrouée, T.D. Butters, F.M. Platt, J. McCauley, B.S. Blumberg, R.A. Dwek, T.M. Block, Proc. Natl. Acad. Sci. USA 96, 11878–11882 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, J. Combinatorial Chem. 1, 55–68 (1999)

    Article  CAS  Google Scholar 

  9. A.A. Bekhit, O.A. El-Sayed, E. Aboulmagd, J.Y. Park, Eur. J. Med. Chem. 39, 249–255 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. L.M. Beal, B. Liu, W. Chu, K.D. Moeller, Tetrahedron 56, 10113–10125 (2000)

    Article  CAS  Google Scholar 

  11. C.A. Montalbetti, V. Falque, Tetrahedron 61, 10827–10852 (2005)

    Article  CAS  Google Scholar 

  12. L.C. Chan, B.G. Cox, J. Org. Chem. 72, 8863–8869 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. N. Kushwaha, R.M. Salini, K.S. Kushwaha, Int. J. Chem. Tech 3, 204–209 (2011)

    Google Scholar 

  14. V. Duraipandiyan, S. Ignacimuthu, J. Ethnopharmacol. 123, 494–498 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. S.R. Dorn, H. Vippagunta, C. Matile, J.L. Jaquet, R.G. Vennerstrom, Ridley, Biochem. Pharmacol. 55, 727–736 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. V.R. Shanbhag, A.M. Crider, R. Gokhale, A. Harpalani, R.M. Dick, J. Pharm. Sci. 81, 149–154 (1992)

    Article  CAS  PubMed  Google Scholar 

  17. M. Andreani, A. Granaiola, A. Leoni, R. Locatelli, M. Morigi, Rambaldi, J. Med. Chem. 48, 3085–3089 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. W. Gao, J.Y. Kim, S.N. Chen, S.H. Cho, J. Choi, B.U. Jaki, Y. Jin, D.C. Lakin, E. Lee, S.Y. Lee, J.B. McAipline, J.G. Napolitano, S.G. Franzblau, J.W. Suh, G.F. Fauli, Org. Lett. 16, 6044–6047 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. Edmont, R. Rocher, C. Plisson, J. Chenault, Bioorg. Med. Chem. Lett. 10, 1831–1834 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. L. Jyothish Kumar, V. Vijayakumar, Res. Chem. Intermed. 21, 5691–5705 (2017)

    Article  CAS  Google Scholar 

  21. S. Bienert, A. Waterhouse, T.A. de Beer, G. Tauriello, G. Studer, L. Bordoli, T. Schwede, Nucleic Acids Res. 45, 313–319 (2017)

    Article  CAS  Google Scholar 

  22. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanne, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comput. Chem. 30, 2785–2791 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1–2, 19–25 (2015)

    Article  Google Scholar 

  24. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliand, T.N. Bhat, H. Weissig, I.N. Shindyaloy, P.E. Bourne, The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Kontoyianni, L.M. Mantzanidou, D.L. Hadjipavlou, J. Med. Chem. 47, 558–565 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Kim, Y.K. Jeong, M.H. Wang, W.Y. Lee, H.I. Rhee, Nutrition 21, 756–761 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. C. Hansawasdi, J. Kawabata, T. Kasai, Biosci. Biotechnol. Biochem. 64, 1041–1043 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the administration, VIT University, Vellore, India, for providing facilities to carry research work and also thankful to SIF-Chemistry for providing NMR facility. Authors are thankful to University of Hyderabad [Network resource centre (UGC-NRC)] for HRMS facility and also NMR facilities. The authors also thankful to the Division of Animal Biotechnology, Department of Biotechnology, School of Herbal Studies and Nature Sciences, Dravidian University. Author L. Jyothish Kumar is thankful to the VIT University for providing research associate ship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vijayakumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5656 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, L.J., Suresh, Y., Rajasekaran, R. et al. Synthesis and exploration of in-silico and in-vitro α-glucosidase and α-amylase inhibitory activities of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)arylamides. J IRAN CHEM SOC 16, 1071–1080 (2019). https://doi.org/10.1007/s13738-018-01580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-01580-4

Keywords

Navigation