Skip to main content
Log in

Fischer–Tropsch study over impregnated silica-supported cobalt–iron nanocatalyst

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Fischer–Tropsch reaction was carried out over the impregnated 60 %Co/40 %Fe/90wt%SiO2/1.5wt%K catalyst in a fixed-bed micro-reactor over a range of operating conditions. Reaction rate expression on the basis of the Langmuir–Hinshelwood–Hougen–Watson type models for the FT reactions was derived. Here seven kinetic expressions for CO consumption were proposed, and interaction between adsorption CO and dissociated adsorption hydrogen as the controlling step gave the most conceivable kinetic model. According to one factor at a time method, the product distributions in FT synthesis are found to be strongly influenced by temperature and pressure, and maximum hydrocarbon selectivity C2–C3 light olefins are obtained at 260 °C and 8 bar. The activation energy for CO consumption is calculated as 106.2 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Atashi, F. Siami, A.A. Mirzaei, M. Sarkari, Kinetic study of Fischer–Tropsch process on titania-supported cobalt–manganese catalyst. J. Ind. Eng. Chem. 16, 952–961 (2010)

    Article  CAS  Google Scholar 

  2. M. Mansouri, H. Atashi, A.A. Mirzaei, R. Jangi, Kinetics of the Fischer–Tropsch synthesis on silica-supported cobalt–cerium catalyst. Int. J. Ind. Chem. 4, 1–10 (2013)

    Article  Google Scholar 

  3. A.A. Mirzaei, A. Beigbabaei, M. Galavy, A. Youssefi, A silica supported Fe–Co bimetallic catalyst prepared by the sol/gel technique: operating conditions, catalytic properties and characterization. Fuel Process. Technol. 91, 335–347 (2010)

    Article  CAS  Google Scholar 

  4. C. Cabet, A.C. Roger, A. Kiennemann, S. Läkamp, G. Pourroy, Synthesis of new Fe–Co based metal/oxide composite materials: application to the Fischer–Tropsch synthesis. J. Catal. 173, 64–73 (1998)

    Article  CAS  Google Scholar 

  5. F. Tihay, A.C. Roger, A. Kiennemann, G. Pourroy, Fe–Co based metal/spinel to produce light olefins from syngas. Catal. Today 58, 263–269 (2000)

    Article  CAS  Google Scholar 

  6. V.A. de la Peña O’Shea, M.C. Alvarez-Galvan, J.M. Campos-Martin, J.L.G. Fierro, Fischer–Tropsch synthesis on mono-and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors. Appl. Catal. A 326, 65–73 (2007)

    Article  Google Scholar 

  7. V.A. de la Peña O’Shea, M.C. Alvarez-Galvan, J.M. Campos-Martin, N.N. Menendez, J.S.D. Tornero, J.L.G. Fierro, Surface and structural features of Co–Fe oxide nanoparticles deposited on a silica substrate. Eur. J. Inorg. Chem. 2006, 5057–5068 (2006)

    Article  Google Scholar 

  8. A.N. Pour, S.M.K. Shahri, H.R. Bozorgzadeh, Y. Zamani, A. Tavasoli, M.A. Marvast, Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis. Appl. Catal. A 348, 201–208 (2008)

    Article  Google Scholar 

  9. R. Zennaro, M. Tagliabue, C.H. Bartholomew, Kinetics of Fischer–Tropsch synthesis on titania-supported cobalt. Catal. Today 58, 309–319 (2000)

    Article  CAS  Google Scholar 

  10. A.A. Mirzaei, B. Shirzadi, H. Atashi, M. Mansouri, Modeling and operating conditions optimization of Fischer–Tropsch synthesis in a fixed-bed reactor. J. Ind. Eng. Chem. 18, 1515–1521 (2012)

    Article  CAS  Google Scholar 

  11. M. Mansouri, H. Atashi, N. Setareshenas, Detailed Kinetic Study of the FTS Over the Co-precipitated Co–Ce/SiO 2 (Lambert Academic Publishing, Saarbrüchen, 2013)

    Google Scholar 

  12. H. Atashi, M. Mansouri, S.H. Hosseini, M. Khorram, A.A. Mirzaei, M. Karimi, G. Mansouri, Intrinsic kinetics of the Fischer–Tropsch synthesis over an impregnated cobalt-potassium catalyst. Korean J. Chem. Eng. 29, 304–309 (2012)

    Article  CAS  Google Scholar 

  13. M. Mansouri, H. Atashi, F.F. Tabrizi, G. Mansouri, N. Setareshenas, Fischer–Tropsch synthesis on cobalt–manganese nanocatalyst: studies on rate equations and operation conditions. Int. J. Ind. Chem. 5, 1–9 (2014)

    Article  Google Scholar 

  14. G.P. van der Laan, A.A.C.M. Beenackers, Catalysis reviews—science and engineering. Catal. Rev. Sci. Eng. 41, 255–318 (1999)

    Article  Google Scholar 

  15. G.A. Huff Jr., C.N. Satterfield, Intrinsic kinetics of the Fischer–Tropsch synthesis on a reduced fused-magnetite catalyst. Ind. Eng. Chem. Process Des. Dev. 23, 696–705 (1984)

    Article  CAS  Google Scholar 

  16. I.C. Yates, C.N. Satterfield, Intrinsic kinetics of the Fischer–Tropsch synthesis on a cobalt catalyst. Energy Fuels 5, 168–173 (1991)

    Article  CAS  Google Scholar 

  17. E. van Steen, H. Schulz, Polymerisation kinetics of the Fischer–Tropsch CO hydrogenation using iron and cobalt based catalysts. Appl. Catal. A 186, 309–320 (1999)

    Article  Google Scholar 

  18. A. Outi, I. Rautavuoma, H.S. van der Baan, Kinetics and mechanism of the Fischer–Tropsch hydrocarbon synthesis on a cobalt on alumina catalyst. Appl. Catal. 1, 247–272 (1981)

    Article  CAS  Google Scholar 

  19. M. Mansouri, H. Atashi, F.F. Tabrizi, A.A. Mirzaei, G. Mansouri, Kinetics studies of nano-structured cobalt–manganese oxide catalysts in Fischer–Tropsch synthesis. J. Ind. Eng. Chem. 19, 1177–1183 (2013)

    Article  CAS  Google Scholar 

  20. C.G. Visconti, E. Tronconi, L. Lietti, R. Zennaro, P. Forzatti, Development of a complete kinetic model for the Fischer–Tropsch synthesis over Co/Al2O3 catalysts. Chem. Eng. Sci. 62, 5338–5343 (2007)

    Article  CAS  Google Scholar 

  21. T. Botao, C. Jie, W. Haijun, L. Jiqing, Z. Shaocheng, L. Ya, L. Ying, G. Xiaohui, A corrected comprehensive kinetic model of Fischer–Tropsch synthesis. Chin. J. Catal. 28, 687–695 (2008)

    Google Scholar 

  22. J. Yang, Y. Liu, J. Chang, Y. Wang, L. Bai, L. Xu, H. Xiang, Y. Li, B. Zhong, Detailed kinetics of Fischer–Tropsch synthesis on an industrial Fe–Mn catalyst. Ind. Eng. Chem. Res. 42, 5066–5090 (2003)

    Article  CAS  Google Scholar 

  23. F. Fischer, H. Tropsch, The synthesis of petroleum at atmospheric pressures from gasification products of coal. Brennst. Chem. 7, 97–104 (1926)

    CAS  Google Scholar 

  24. H.H. Storch, N. Golumbic, R.B. Anderson, The Fischer–Tropsch Synthesis and Related Synthesis (Wiley, New York, 1951)

    Google Scholar 

  25. J.T. Kummer, H.H. Podgurski, W.B. Spencer, P.H. Emmett, Mechanism studies of the Fischer–Tropsch synthesis: the addition of radioactive alcohol. J. Am. Chem. Soc. 73, 564–569 (1951)

    Article  CAS  Google Scholar 

  26. H.B. Zhang, G.L. Schrader, Characterization of a fused iron catalyst for Fischer–Tropsch synthesis by in situ laser Raman spectroscopy. J. Catal. 5, 325–332 (1985)

    Article  Google Scholar 

  27. C.E. Galarrage, Heterogeneous catalyst for the synthesis of middle distillate hydrocarbons. M.Sc. Thesis. University of Western Qntario, London, 1998

  28. R. Bechara, D. Balloy, J.-Y. Dauphin, J. Grimblot, Influence of the Characteristics of γ-aluminas on the dispersion and the reducibility of supported cobalt catalysts. Chem. Mater. 11, 1703–1711 (1999)

    Article  CAS  Google Scholar 

  29. A.Y. Khodakov, W. Chu, P. Fongarland, Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007)

    Article  CAS  Google Scholar 

  30. G. Bercic, J. Levec, Intrinsic and global reaction of methanol dehydration over γ-Al2O3 pellets. Ind. Eng. Chem. Res. 31, 1035–1040 (1992)

    Article  CAS  Google Scholar 

  31. B.W. Wojciechowski, The kinetics of the Fischer–Tropsch synthesis. Catal. Rev. Sci. Eng. 30, 629–702 (1988)

    Article  CAS  Google Scholar 

  32. M.J. Keyser, R.C. Everson, R.L. Espinoza, Fischer–Tropsch kinetic studies with cobalt–manganese oxide catalysts. Ind. Eng. Chem. Res. 39, 48–54 (2000)

    Article  CAS  Google Scholar 

  33. C.H. Yang, F.E. Massoth, A.G. Oblad, Kinetics of CO + H2 reaction over Co–Cu–Al2O3 catalyst. Adv. Chem. Ser. 178, 35–46 (1979)

    Article  Google Scholar 

  34. R.C. Reuel, C.H. Bartholomew, Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt. J. Catal. 85, 78–88 (1984)

    Article  CAS  Google Scholar 

  35. A. Sari, Y. Zamani, S.A. Taheri, Intrinsic kinetics of Fischer–Tropsch reactions over an industrial Co–Ru/γ-Al2O3 catalyst in slurry phase reactor. Fuel Process. Technol. 90, 1305–1313 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Atashi or Mohsen Mansouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, M., Atashi, H., Tabrizi, F.F. et al. Fischer–Tropsch study over impregnated silica-supported cobalt–iron nanocatalyst. J IRAN CHEM SOC 14, 245–256 (2017). https://doi.org/10.1007/s13738-016-0975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0975-y

Keywords

Navigation