Skip to main content
Log in

Modelling and molecular dynamics simulation studies on a hexagonal glycolipid assembly

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The hexagonal columnar phase (HI) of an aqueous formulation of octyl β-glucoside with 67 % lipid content was modelled and 15-ns molecular dynamics simulation was performed. Initial investigations on the aggregation size led to good correlation of simulation and experimental d-spacing for a 12 molecule cylinder core. The corresponding hexagonal phase was stable over the entire simulation time and provided conclusive local density profiles. Hydrogen bonding analyses showed only minor differences in the bonding profile between the hexagonal and a previously reported micellar phase. However, the glycoside interaction decreases with increasing curvature, i.e. from a lamellar assembly over the hexagonal phase to the micelle, while the opposite behaviour applies for interactions with water. A view into the water dynamics revealed an anisotropic-correlated diffusion process with higher mobility along the cylinder axes than perpendicular to them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Hashim, A. Sugimura, H. Minamikawa, T. Heidelberg, Liq. Cryst. 39, 1–17 (2012)

    Article  CAS  Google Scholar 

  2. V. Vill, R. Hashim, Curr. Opin. Colloid Interface Sci. 7, 395–409 (2002)

    Article  CAS  Google Scholar 

  3. T. Kaasgaard, C. Drummond, Phys. Chem. Chem. Phys. 8, 4957–4975 (2006)

    Article  CAS  Google Scholar 

  4. M. Hato, H. Minamikawa, K. Tamada, Y. Tanabe, Adv. Colloid Interface Sci. 80, 233–270 (1999)

    Article  CAS  Google Scholar 

  5. J.M. Seddon, Biochim. Biophys. Acta 1031, 1–69 (1990)

    Article  CAS  Google Scholar 

  6. H.S. Nguan, T. Heidelberg, R. Hashim, G.J.T. Tiddy, Liq. Cryst. 37, 1205–1213 (2010)

    Article  CAS  Google Scholar 

  7. C. Tanford, Science 200, 1012–1018 (1978)

    Article  CAS  Google Scholar 

  8. C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes (Wiley, New York, 1980)

    Google Scholar 

  9. S.T. Hyde, in Handbook of Applied Surface and Colloid Chemistry, vol. 2, ed. by K. Holmberg (Wiley, New York, 2001), pp. 300–332

  10. R.N.A.H. Lewis, D.A. Mannock, R.N. McElhaney, Curr. Top. Membr. 44, 25–102 (1997)

    Article  CAS  Google Scholar 

  11. R. Hassan, W. Rowe, G.J.T. Tiddy, in Handbook of Applied Surface and Colloid Chemistry, vol. 1, ed. by K. Holmberg (Wiley, New York, 2001), pp. 465–508

  12. D.M. Small, in Handbook of Lipid Research, vol. 4, ed. by D.J. Hanahan (Plenium Press, New York, 1986), pp. 1–672

  13. R.G. Laughlin, The Aqueous Phase Behavior of Surfactants (Academic Press, San Diego, 1996)

    Google Scholar 

  14. K. Fontell, Colloid Polym. Sci. 268, 264–285 (1990)

    Article  CAS  Google Scholar 

  15. K. Fontell, Adv. Colloid Interface Sci. 41, 127–147 (1992)

    Article  CAS  Google Scholar 

  16. C.F. Black, R.J. Wilson, T. Nylander, M.K. Dymond, G.S.J. Attard, J. Am. Chem. Soc. 132, 9728–9732 (2010)

    Article  CAS  Google Scholar 

  17. L.M. Crowe, J.H. Crowe, Arch. Biochem. Biophys. 217, 582–587 (1982)

    Article  CAS  Google Scholar 

  18. B. de Kruijff, A. Rietveld, P.R. Cullis, Biochim. Biophys. Acta 600, 343–357 (1980)

    Article  Google Scholar 

  19. B. de Kruijff, A.M.H.P. van der Besselaar, P.R. Cullis, H. van den Bosch, L.L.M. van Deenen, Biochim. Biophys. Acta 514, 1–8 (1978)

    Article  Google Scholar 

  20. A. Stier, S.A.E. Finch, B. Bosterling, FEBS Lett. 91, 109–112 (1978)

    Article  CAS  Google Scholar 

  21. H. Ellens, D.P. Siegel, D. Alford, P.L. Yeagle, L. Boni, L.J. Lis, Biochemistry 28, 3692–3703 (1989)

    Article  CAS  Google Scholar 

  22. P.R. Cullis, M.J. Hope, Nature 271, 672–675 (1978)

    Article  CAS  Google Scholar 

  23. M.J. Hope, P.R. Cullis, Biochim. Biophys. Acta 640, 82–90 (1981)

    Article  CAS  Google Scholar 

  24. V. Luzzati, F.J. Husson, Cell Biol. 12, 207–219 (1962)

    Article  CAS  Google Scholar 

  25. F. Nisson, O. Soderman, Langmuir 12, 902–908 (1996)

    Article  Google Scholar 

  26. R.M. Garavito, J.P. Rosenbusch, Methods Enzymol. 125, 309–328 (1986)

    Article  CAS  Google Scholar 

  27. H. Kiwada, H. Nimura, Y. Fujisaki, S. Yamada, Y. Kato, Chem. Pharm. Bull. 33, 753–759 (1985)

    Article  CAS  Google Scholar 

  28. L.Z. He, V. Garamus, B. Niemeyer, H. Helmholz, R. Willumeit, Mol. Liq. 89, 239–249 (2000)

    Article  CAS  Google Scholar 

  29. A. Angelova, B. Angelov, R. Mutafchieva, S. Lesieur, P. Gouvreur, Acc. Chem. Res. 44, 147–156 (2011)

    Article  CAS  Google Scholar 

  30. G. Zhang, T.A. Neubert, Proteomics 6, 571–578 (2006)

    Article  CAS  Google Scholar 

  31. J. Corsi, R.W. Hawtin, O. Ces, G.S. Attard, S. Khalid, Langmuir 26, 12119–12125 (2010)

    Article  CAS  Google Scholar 

  32. S.J. Marrink, A.E. Mark, Biophys. J. 87, 3894–3900 (2004)

    Article  CAS  Google Scholar 

  33. T.T. Chong, R. Hashim, R.A. Bryce, J. Phys. Chem. B 110, 4978–4984 (2010)

    Article  Google Scholar 

  34. B.C. Stephenson, K.A. Stafford, K.J. Beers, D. Blankschtein, J. Phys. Chem. B 112, 1641–1656 (2008)

    Article  CAS  Google Scholar 

  35. T.T. Chong, T. Heidelberg, R. Hashim, A. Gary, Liq. Cryst. 34, 349–363 (2007)

    Article  CAS  Google Scholar 

  36. T. Rog, I. Vattulainen, A. Bunker, M. Karttunen, J. Phys. Chem. B 111, 10146–100154 (2007)

    Article  CAS  Google Scholar 

  37. P. Sakaya, J.M. Seddon, V. Vill, Liq. Cryst. 23, 409–424 (1997)

    Article  Google Scholar 

  38. D.A. Case, T.A. Darden, T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, M. Crowley, R.C. Walker, W. Zhang, K.M. Merz, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K.F. Wong, F. Paesani, J. Vanicek, X. Wu, S.R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D.H. Mathews, M.G. Seetin, C. Sagui, V. Babin, P.A. Kollman, AMBER 10, University of California, San Francisco (2008)

    Google Scholar 

  39. T.T. Chong, T. Heidelberg, R. Hashim, R.A. Bryce, Malays. J. Sci. 27, 75–82 (2008)

    CAS  Google Scholar 

  40. P. Konidala, L. He, B. Niemeyer, J. Mol. Graph. Model. 25, 77–86 (2006)

    Article  CAS  Google Scholar 

  41. T.A. Andrea, W.C. Swope, H.C. Andersen, J. Chem. Phys. 79, 4576 (1983)

    Article  CAS  Google Scholar 

  42. U.L. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577–8593 (1995)

    Article  CAS  Google Scholar 

  43. T.D. Darden, L. Pederson, J. Chem. Phys. 98, 10089 (1993)

    Article  CAS  Google Scholar 

  44. S. Miyamoto, P.A. Kollman, J. Comput. Chem. 13, 952–962 (1992)

    Article  CAS  Google Scholar 

  45. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling, Proteins Struct. Funct. Bioinform. 65, 712–725 (2006)

    Article  CAS  Google Scholar 

  46. K.N. Kirschner, A.B. Yonhye, S.M. Tschampel, J. González-Outeiriño, C.R. Daniels, B.L. Folry, R.J. Woods, J. Comput. Chem. 29, 622–655 (2008)

    Article  CAS  Google Scholar 

  47. J.N. Israelachvili, Intramolecular and Surface Forces (Academic Press, London, 1992)

    Google Scholar 

  48. H.S. Muddana, R.R. Gullapalli, M. Evangelos, P.J. Butler, Phys. Chem. Chem. Phys. 13, 1368–1378 (2011)

    Article  CAS  Google Scholar 

  49. J. Wu, K.M. Berland, Biophys. J. 95, 2049–2052 (2008)

    Article  CAS  Google Scholar 

  50. J.B. Delfau, C. Coste, C. Even, M. Saint Jean, Phys. Rev. E 82, 031201 (2010)

    Article  CAS  Google Scholar 

  51. A. Saupe, Z. Naturforsch. 19, 161–171 (1964)

    Google Scholar 

  52. J. Seelig, A. Seelig, Q. Rev. Biophys. 13, 19–61 (1980)

    Article  CAS  Google Scholar 

  53. P. van der Ploeg, H.J.C. Berendsen, J. Chem. Phys. 76, 3271–3276 (1982)

    Article  Google Scholar 

  54. R.L. Thurmond, G. Lindblom, M.F. Brown, Biochemistry 32, 5394–5410 (1993)

    Article  CAS  Google Scholar 

  55. D. Otten, K. Beyer, Chem. Phys. Lipids 77, 203–215 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Simulations were performed on multiple cpus on a SGI cluster at the University of Malaya. The access of these computational resources is gratefully acknowledged. The research was financially supported by the University of Malaya under Grant PS457/2010A. The authors thank Professor Dr. Sithi Vanayakam Muniandi for inspiring discussions on anomalous diffusion processes and Nguan Hock Seng for assistance in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Heidelberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, S., Heidelberg, T. Modelling and molecular dynamics simulation studies on a hexagonal glycolipid assembly. J IRAN CHEM SOC 14, 65–74 (2017). https://doi.org/10.1007/s13738-016-0958-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0958-z

Keywords

Navigation