Skip to main content
Log in

Hydrophobic behavior, ROS production, and heme degradation of hemoglobin upon interaction with n-alkyl sulfates

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The oxygen-containing free radical species form upon interaction of amphiphilic substances such as sodium dodecyl sulfate and hemoglobin. Under these conditions, hemoglobin is converted to methemoglobin and simultaneously results in heme degradation. Since heme is located in a hydrophobic moiety of hemoglobin, we hypothesized that other hydrophobic substances or amphiphilic xenobiotics can dispose hemoglobin to oxidative stress. Here this hypothesis was tested by investigating heme degradation of hemoglobin during interaction with n-alkyl sulfates. This was accomplished using UV–Vis and fluorescence spectroscopy, chemometric analysis, and chemiluminescence methods. We determined whether a relationship exists between the alkyl tail length (surfactant hydrophobicity) of n-alkyl sulfate homologues, reactive oxygen species (ROS) production, and heme degradation pattern of hemoglobin. We also proposed a mechanism for these types of interactions and induction of heme degradation. Our results indicated that hemoglobin structural–functional changes including globin denaturation are the key factors in starting the heme degradation process, and heme degradation product patterns were dependent on each alkyl sulfate. However, the number of fluorescent components (heme degradation products) was independent of the alkyl sulfate type. The reason for this phenomenon was the mechanism of reaction in which the amount of hydrogen peroxide was changed with each homologue, but the mechanism of degradation remained the same. Thus, an increase in hydrophobic chain length of the surfactants correlated with the enhanced ROS production and heme degradation of hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.N. Zhao, Y. Mu, L.Y. Chew, Phys. Chem. Chem. Phys. 15, 14098 (2013)

    Article  CAS  Google Scholar 

  2. B.P. Yu, Physiol. Rev. 74, 139 (1994)

    CAS  Google Scholar 

  3. J. Rifkind, L. Zhang, A. Levy, P. Manoharan, Free Radical Res. 13, 645 (1991)

    Article  Google Scholar 

  4. E. Nagababu, J.M. Rifkind, Antioxid. Redox Signal. 6, 967 (2004)

    Article  CAS  Google Scholar 

  5. H. Fisher, A. Muller, Z. Hoppe-Seyler’s, Physiol. Chem. 246, 43 (1937)

    Article  Google Scholar 

  6. C.C. Winterbourn, Methods Enzymol. 186, 265 (1990)

    Article  CAS  Google Scholar 

  7. E. Nagababu, J.M. Rifkind, Biochemistry 39, 12503 (2000)

    Article  CAS  Google Scholar 

  8. S. Kwok, J.L. Fischer, J.D. Rogers, J. Med. Case Rep. 2, 16 (2008)

    Article  Google Scholar 

  9. H. Nohl, K. Stolze, Free Radic. Biol. Med. 15, 257 (1993)

    Article  CAS  Google Scholar 

  10. D. Ajloo, A. Moosavi-Movahedi, G. Hakimelahi, A. Saboury, H. Gharibi, Colloids Surf. B 26, 185 (2002)

    Article  CAS  Google Scholar 

  11. N. Salehi, A.A. Moosavi-Movahedi, L. Fotouhi, S. Yousefinejad, M. Shourian, R. Hosseinzadeh, N. Sheibani, M. Habibi-Rezaei, J. Photochem. Photobiol. B Biol. 133, 11 (2014)

    Article  CAS  Google Scholar 

  12. M. Garrido, F. Rius, M. Larrechi, Anal. Bioanal. Chem. 390, 2059 (2008)

    Article  CAS  Google Scholar 

  13. A. Smilde, R. Bro, P. Geladi, Multi-way Analysis: Applications in the Chemical Sciences (Wiley, Hoboken, 2005)

    Google Scholar 

  14. L. Fotouhi, S. Yousefinejad, N. Salehi, A. Saboury, N. Sheibani, A. Moosavi-Movahedi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1974 (2015)

    Article  CAS  Google Scholar 

  15. R.C. Williams, K.-Y. Tsay, Anal. Biochem. 54, 137 (1973)

    Article  CAS  Google Scholar 

  16. A. Riggs, Methods Enzymol. 75, 5 (1981)

    Article  Google Scholar 

  17. R.E. Benesch, R. Benesch, S. Yung, Anal. Biochem. 55, 245 (1973)

    Article  CAS  Google Scholar 

  18. K. Abbasi-Tejarag, A. Divsalar, A.A. Saboury, B. Ghalandari, H. Ghourchian, J. Biomol. Struct. Dyn. (2015). doi:10.1080/07391102.2015.1121408

    Google Scholar 

  19. R. Bro, Chemometr. Intell. Lab 38, 149 (1997)

    Article  CAS  Google Scholar 

  20. N.K.M. Faber, R. Bro, P.K. Hopke, Chemometr. Intell. Lab 65, 119 (2003)

    Article  CAS  Google Scholar 

  21. M.V. Bosco, M.P. Callao, M.S. Larrechi, Anal. Chim. Acta 576, 184 (2006)

    Article  CAS  Google Scholar 

  22. C.D. Bernardes, R.J. Poppi, M.M. Sena, Talanta 82, 640 (2010)

    Article  CAS  Google Scholar 

  23. G. Tomasi, R. Bro, Comput. Stat. Data Anal. 50, 1700 (2006)

    Article  Google Scholar 

  24. R. Bro, H.A. Kiers, J. Chemom. 17, 274 (2003)

    Article  CAS  Google Scholar 

  25. W. Liu, X. Guo, R. Guo, Int. J. Biol. Macromol. 41, 548 (2007)

    Article  CAS  Google Scholar 

  26. F.C. Chilaka, C.O. Nwamba, A.A. Moosavi-Movahedi, ‎Cell Biochem. Biophys. 60, 187 (2011)

    Article  CAS  Google Scholar 

  27. M. Mojtahedi, H. Parastar, M. Jalali-Heravi, J. Chamani, F. Chilaka, A. Moosavi-Movahedi, Colloids Surf. B 63, 183 (2008)

    Article  CAS  Google Scholar 

  28. E. Nagababu, J.M. Rifkind, Biochem. Biophys. Res. Commun. 247, 592 (1998)

    Article  CAS  Google Scholar 

  29. E. Nagababu, J.M. Rifkind, Biochem. Biophys. Res. Commun. 273, 839 (2000)

    Article  CAS  Google Scholar 

  30. D. Maitra, J. Byun, P.R. Andreana, I. Abdulhamid, M.P. Diamond, G.M. Saed, S. Pennathur, H.M. Abu-Soud, Free Radic. Biol. Med. 51, 374 (2011)

    Article  CAS  Google Scholar 

  31. R.M. Esquerra, I. Lopez-Pena, P. Tipgunlakant, I. Birukou, R.L. Nguyen, J. Soman, J.S. Olson, D.S. Kliger, R.A. Goldbeck, Phys. Chem. Chem. Phys. 12, 10270 (2010)

    Article  CAS  Google Scholar 

  32. A. Moosavi-Movahedi, M. Dayer, P. Norouzi, M. Shamsipur, A. Yeganeh-Faal, M. Chaichi, H. Ghourchian, Colloids Surf. B 30, 139 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of Research Council of University of Tehran, Center of Excellence in Biothermodynamics (CEBiotherm), Iran National Science Foundation (INSF), Iran National Elites Foundation (INEF), UNESCO Chair in Interdisciplinary Research in Diabetes, and Iran Society of Biophysical Chemistry are gratefully acknowledged. This work has been also supported by the Center for International Scientific Studies & Collaboration (CISSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Moosavi-Movahedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotouhi, L., Moosavi-Movahedi, A.A., Yousefinejad, S. et al. Hydrophobic behavior, ROS production, and heme degradation of hemoglobin upon interaction with n-alkyl sulfates. J IRAN CHEM SOC 13, 2103–2111 (2016). https://doi.org/10.1007/s13738-016-0928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0928-5

Keywords

Navigation