Skip to main content
Log in

Synthesis and characterization of chitosan coating of NiFe2O4 nanoparticles for biomedical applications

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Nickel ferrite nanoparticle is a soft magnetic material whose appealing properties as well as various technical applications have rendered it as one of the most attractive class of materials; its technical applications range from its utility as a sensor and catalyst to its utility in biomedical processes. The present paper focuses first on the synthesis of NiFe2O4 nanoparticles through co-precipitation method resulting in calcined nanoparticles that were achieved at different times and at a constant temperature (773 k). Afterward, they were dispersed in water that was mixed by chitosan. Chitosan was bonded on the surface of nanoparticles by controlling the pH of media. In order to assess the structural and magnetic properties of nanoparticles, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) analyses were conducted at room temperature. As per the results of XRD analysis, the pure NiFe2O4 was synthesized. Additionally, nanoparticles grew in size by extending the calcination process duration. TEM micrographs were used to determine the size and shape of particle; the obtained results indicate that the particle size was in a range of 17–30 nm and of a circular shape. The proper chitosan covering was also indicated by FTIR results. The VSM analysis also revealed that the saturated magnetization of NiFe2O4 nanoparticles stood in a range of 29 emu/g and 45 Qe. A stable maximum temperature ranging from 30 to 42 was successfully achieved within 10 min. Also, a specific absorption rate of up to 8.4 W/g was achieved. The study results revealed that the SAR parameter of the coated nickel ferrite nanoparticle is more than that of pure nickel ferrite or cobalt ferrite nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Caution: aqua regia is an extremely toxic chemical and should be handled with care!

References

  1. S. Mostaghim, M. Naderi, A. Ghazitabar, Synthesis of magnetite–gold nanoshells by means of the secondary gold resource. J. Iran. Chem. Soc. 12, 1709–1716 (2015)

    Article  CAS  Google Scholar 

  2. R. Ranjbar, M. Naderi, H. Omidvar, G. Amoabedini, Gold recovery from copper anode slime by means of magnetite nanoparticles (MNPs). Hydrometallurgy 143, 54–59 (2014)

    Article  CAS  Google Scholar 

  3. H. Nathani, S. Gubbala, R.D.K. Misra, Magnetic behavior of nanocrystalline nickel ferrite: part I. The effect of surface roughness. J. Mater. Sci. Eng. B 121(1–2), 126–136 (2005)

    Article  Google Scholar 

  4. M. Sugimoto, The past, present, and future of ferrites. J. Am. Ceram. Soc. 82(2), 269 (1999)

    Article  CAS  Google Scholar 

  5. Y.L. Liu, Z.M. Liu, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sens. Actuators B 107, 600–604 (2005)

    Article  CAS  Google Scholar 

  6. J. Giri, P. Pradhan, T. Sriharsha, D. Bahadur, Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications. J. Appl. Phys. 97, 913 (2005)

    Article  Google Scholar 

  7. S. Dutz, J.H. Clement, D. Eberbeck, T. Gelbrich, R. Hergt, R. Muller, J. Wotschadlo, M. Zeisberger, Ferro fluids of magnetic multicore nanoparticles for biomedical applications. J. Magn. Magn. Mater. 321, 1501–1504 (2009)

    Article  CAS  Google Scholar 

  8. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, Microwave behavior of ferrites prepared via sol–gel method. J. Magn. Magn. Mater. 246(3), 360–365 (2002)

    Article  CAS  Google Scholar 

  9. S. Son, M. Taheri, E. Carpenter, V.G. Harris, M.E. McHenry, Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch. J. Appl. Phys. 91(10), 7589 (2002)

    Article  CAS  Google Scholar 

  10. M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor. J. Alloys Compd. 494, 410–414 (2010)

    Article  CAS  Google Scholar 

  11. M. Salavati-Niasari, F. Davar, T. Mahmoudi, A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. J. Polyhedron. 28, 1455–1458 (2009)

    Article  CAS  Google Scholar 

  12. J. Saffari, H. Shams, D. Ghanbari, A. Esmaeili, A simple chemical method for synthesis of NiFe2O4 nanoparticles and polystyrene-based magnetic nanocomposites. J. Clust. Sci. 25, 1225–1236 (2014)

    Article  CAS  Google Scholar 

  13. J. Lai, K.V.P.M. Shafi, A. Ulman, K. Loos, N.L. Yang, M.H. Cui, T. Vogt, C. Estournes, D.C. Locke, Mixed iron–manganese oxide nanoparticles. J. Phys. Chem. B 108, 14876–14883 (2004)

    Article  CAS  Google Scholar 

  14. F. Ansaria, A. Sobhanib, M. Salavati-Niasaria, Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol–gel auto-combustion process. J. Magn. Magn. Mater. 401, 362–369 (2016)

    Article  Google Scholar 

  15. M. Salavati-Niasari, F. Davar, M. Mazaheri, M. Shaterian, Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]–oleylamine complex by thermal decomposition. J. Magn. Magn. Mater. 320, 575–578 (2008)

    Article  CAS  Google Scholar 

  16. M. Salavati-Niasari, N. Noshin, F. Davar, Synthesis and characterization of NiO nanoclusters via thermal decomposition. J. Polyhedron. 28, 1111–1114 (2009)

    Article  CAS  Google Scholar 

  17. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–26 (2011)

    Article  CAS  Google Scholar 

  18. D.T.K. Dung, T.H. Hai, L.H. Phuc, B.D. Long, L.K. Vinh, P.N. Truc, Preparation and characterization of magnetic nanoparticles with chitosan coating. J. Phys. Conf. Ser. 187, 012036 (2009)

    Article  Google Scholar 

  19. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    Article  CAS  Google Scholar 

  20. A. Thangaraja, V. Savitha, K. Jegatheesan, Preparation and characterization of polyethylene glycol coated silica nanoparticles for drug delivery application. Int. J. Nanotechnol. Appl. 1, 31–38 (2010)

    Google Scholar 

  21. L. Zhang, R. He, Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006)

    Article  CAS  Google Scholar 

  22. P. Pradhan, J. Giri, R. Banerjee, J. Bellare, D. Bahadur, Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles. J. Magn. Magn. Mater. 311, 282–287 (2007)

    Article  CAS  Google Scholar 

  23. W. Weecharangsan, P. Opanasopit, T. Ngawhirunpa, A. Apirakaramwong, T. Rojanarata, U. Ruktanoncha, R.J. Lee, Evaluation of chitosan salts as non-viral gene vectors in CHO-K1 cells. Int. J. Pharm. 161, 348 (2008)

    Google Scholar 

  24. D.G. Kim, Y.I. Jeong, C. Choi, S.H. Roh, S.K. Kang, M.K. Jang, J.W. Nah, Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm. 319, 130 (2006)

    Article  CAS  Google Scholar 

  25. M. Aliahmad, M. Noori, N. Hatefi Kargan, M. Sargazi, Synthesis of nickel ferrite nanoparticles by co-precipitation chemical method. Int. J. Phys. Sci. 8(18), 854–858 (2013)

    Article  CAS  Google Scholar 

  26. B. Jacob, A. Kumar, R.P. Pant, S. Singh, E.M. Mohammed, Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles. Bull. Mater. Sci. 34(7), 1345–1350 (2011)

    Article  CAS  Google Scholar 

  27. S. Imani, A.M. Zand, M. Saadati, H. Honnari, B. Maddah, Synthetics of NiFe2O4 nanoparticles for recombinant His-tag protein purification. Int. J. Nano Dimens. 2(2), 129–135 (2011)

    CAS  Google Scholar 

  28. D.H. Kim, K.N. Kim, K.M. Kim, Y.K. Lee, Targeting to carcinoma cells with chitosan-and starch-coated magnetic nanoparticles for magnetic hyperthermia. J. Biomed. Mater. Res. A 88(1), 1–11 (2009)

    Article  Google Scholar 

  29. J. Jiang, Y.M. Yang, Facile synthesis of nanocrystalline spinel NiFe2O4 via a novel soft chemistry route. Mater. Lett. 61, 4276–4279 (2007)

    Article  CAS  Google Scholar 

  30. H. Kavas, N. Kasapoglu, A. Baykal, Y. Kaseoglu, Characterization of NiFe2O4 nanoparticles synthesized by various methods. Chem. Pap. 63(4), 450–455 (2009)

    Article  CAS  Google Scholar 

  31. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hall, Englewood Cliffs, NJ, 2001), p. 170

    Google Scholar 

  32. M. Salavati-Niasari, F. Davar, T. Mahmoudi, A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron 28(8), 1455–1458 (2009)

    Article  CAS  Google Scholar 

  33. S. Maensiri, C. Masingboon, B. Boonchomb, S. Seraphin, A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr. Mater. 56, 797–800 (2007)

    Article  CAS  Google Scholar 

  34. F. Davar, Z. Fereshteh, M. Salavati-Niasari, Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J. Alloys Compd. 476, 797–801 (2009)

    Article  CAS  Google Scholar 

  35. W.C. Kim, S.L. Park, S.J. Kim, S.W. Lee, C.S. Kim, Magnetic and structural properties of ultrafine Ni–Zn–Cu ferrite grown by a sol–gel method. J. Appl. Phys. 87, 6241 (2000)

    Article  CAS  Google Scholar 

  36. I. Sharifi, H. Shokrollahi, S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012)

    Article  CAS  Google Scholar 

  37. L.L. Lao, R.V. Ramanujan, Magnetic and hydrogel composite materials for hyperthermia applications. J. Mater. Sci. Mater. Med. 15(10), 1061–1064 (2004)

    Article  CAS  Google Scholar 

  38. A. Ghazitabar, M. Naderi, R. Ranjbar, A. Azadmehr, Using thiourea ligand of gold-thiourea complex to facile direct synthesis of silica@gold core–shell nanostructures. J. Iran. Chem. Soc. 12, 2253–2261 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to take this opportunity to express my deepest gratitude for the support that I have received during these past years. Special thanks to Nano System Pars Co (NATSYCO) for manufacturing the device (hyperthermia test) that is crucial in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Ghazitabar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, S., Ghazitabar, A. & Sadrnezhaad, S.K. Synthesis and characterization of chitosan coating of NiFe2O4 nanoparticles for biomedical applications. J IRAN CHEM SOC 13, 2069–2076 (2016). https://doi.org/10.1007/s13738-016-0924-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0924-9

Keywords

Navigation