Skip to main content

Advertisement

Log in

Molecular docking, 2D and 3D-QSAR studies of new indole-based derivatives as HCV-NS5B polymerase inhibitors

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Hepatitis C virus (HCV) is a main cause of liver disease worldwide and a potential cause of considerable malady and mortality in the future. The docking and molecular dynamics simulation (MDs) have been carried out on a series of indole-based derivatives into the cavity of HCV-NS5B polymerase. The docking and MDs led to recognition of the best conformers of inhibitors and also determination of the key interacting amino acids of the binding site of the protein packet. In addition, the conformers are very similar to bioactive ones which in turn will guarantee the most reliable and predictive models in 2D and 3D-QSAR studies. To find the correlation between inhibitory activities of ligands against HCV-NS5B, a comparative molecular field analysis (CoMFA) study, as a 3D-QSAR method, was carried out and the corresponding contour maps of electrostatic and steric fields were computed. Furthermore, 2D descriptors were calculated utilizing the optimal conformers. In the case of 2D-QSAR, a variable selection was applied by genetic algorithm (GA), followed by model building using partial least squares (GA-PLS) and support vector machine (GA-SVM) regression methods. The predictive ability of the proposed models was validated by a structurally diverse test set of 22 compounds that had not been included in the training step. The q 2 and the \(r_{\text{pred}}^{2}\) values for CoMFA, GA-PLS and GA-SVM models were 0.521, 0.655, and 0.746 and 0.659, 0.881, and 0.967, respectively. Moreover, the molecular interactions of these inhibitors with the HCV-NS5B’s active site residues were properly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Hepatitis, Available via World Health Organization (2013), http://www.who.int/mediacentre/factsheets/fs164/en/. Accessed 2013

  2. T. Ishida, T. Suzuki, S. Hirashima, K. Mizutani, A. Yoshida, I. Ando, S. Ikeda, T. Adachi, H. Hashimoto, Bioorg. Med. Chem. Lett. 16(7), 1859–1863 (2006)

    Article  CAS  Google Scholar 

  3. M. Wang, K. Wang, A. Yan, C. Yu, Int. J. Mol. Sci. 13(4), 4033–4047 (2012)

    Article  CAS  Google Scholar 

  4. D.C. Myles, Curr. Opin. Drug Discov. Devel. 4(4), 411–416 (2001)

    CAS  Google Scholar 

  5. K. Koike, J. Infect Chemother. 12(5), 227–232 (2006)

    Article  CAS  Google Scholar 

  6. S. Zeuzem, S.V. Feinman, J. Rasenack, E.J. Heathcote, M-Y Lai, E. Gane, J. O’Grady, J. Reichen, M. Diago, A. Lin, J. Hoffman, M.J. Brunda, New Eng. J. Med. 343(23), 1666–1672 (2000)

    Article  CAS  Google Scholar 

  7. Y.H. Yen, C.H. Hung, T.H. Hu, C.H. Chen, C.M. Wu, J.H. Wang, S.N. Lu, C.M. Lee, Aliment Pharmacol. Ther. 27(1), 72–79 (2008)

    Article  CAS  Google Scholar 

  8. M. Masarone, M. Persico, Expert Rev. Anti infect. Ther. 9(5), 535–543 (2011)

    Article  Google Scholar 

  9. M. Leise, W.R. Kim, Hepatology 50(4), 1307–1309 (2009)

    Article  Google Scholar 

  10. V.K. Agrawal, R. Sohgaura, P.V. Khadikar, Bioorg. Med. Chem. 10(9), 2919–2926 (2002)

    Article  CAS  Google Scholar 

  11. R. Khosrokhavar, J.B. Ghasemi, F. Shiri, Int. J. Mol. Sci. 11(9), 3052–3068 (2010)

    Article  CAS  Google Scholar 

  12. P.V. Khadikar, A. Phadnis, A. Shrivastava, Bioorg. Med. Chem. 10(4), 1181–1188 (2002)

    Article  CAS  Google Scholar 

  13. H. Sun, D.O. Scott, Chem. Bio. Drug. Des. 75(1), 3–17 (2010)

    Article  CAS  Google Scholar 

  14. P.D. Patel, M.R. Patel, N. Kaushik-Basu, T.T. Talele, J. Chem. Inf. Model 48(1), 42–55 (2007)

    Article  Google Scholar 

  15. S. Gharaghani, T. Khayamian, F. Keshavarz, Struct. Chem. 23(2), 341–350 (2012)

    Article  CAS  Google Scholar 

  16. K.X. Chen, C.A. Lesburg, B. Vibulbhan, W. Yang, T-Y Chan, S. Venkatraman, F. Velazquez, Q. Zeng, F. Bennett, G.N. Anilkumar, J. Duca, Y. Jiang, P. Pinto, L. Wang, Y. Huang, O. Selyutin, S. Gavalas, H. Pu, S. Agrawal, B. Feld, H-C Huang, C. Li, K-C Cheng, N-Y Shih, J.A. Kozlowski, S.B. Rosenblum, F.G. Njoroge, J. Med. Chem. 55(5), 2089–2101 (2012)

    Article  CAS  Google Scholar 

  17. K.X. Chen, B. Vibulbhan, W. Yang, M. Sannigrahi, F. Velazquez, T-Y Chan, S. Venkatraman, G.N. Anilkumar, Q. Zeng, F. Bennet, Y. Jiang, C.A. Lesburg, J. Duca, P. Pinto, S. Gavalas, Y. Huang, W. Wu, O. Selyutin, S. Agrawal, B. Feld, H-C Huang, C. Li, K-C Cheng, N-Y Shih, J.A. Kozlowski, S.B. Rosenblum, F.G. Njoroge, J. Med. Chem. 55(2), 754–765 (2011)

    Article  Google Scholar 

  18. S. Harper, S. Avolio, B. Pacini, M. Di Filippo, S. Altamura, L. Tomei, G. Paonessa, M. Di, A. Carfi, C. Giuliano, J. Padron, F. Bonelli, G. Migliaccio, R. De Francesco, R. Laufer, M. Rowley, F. Narjes, J. Med. Chem. 48(14), 4547–4557 (2005)

    Article  CAS  Google Scholar 

  19. H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comp. Phys. Comm. 91(1–3), 43–56 (1995)

    Article  CAS  Google Scholar 

  20. D. van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comp. Chem. 26(16), 1701–1718 (2005)

    Article  Google Scholar 

  21. E. Lindahl, B. Hess, D. van der Spoel, J. Mol. Model. 7(8), 306–317 (2001)

    CAS  Google Scholar 

  22. W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hünenberger, P. Krüger, A.E. Mark, W.R.P. Scott, I.G. Tironi, Biomolecular Simulation: The GROMOS96 manual and userguide. Hochschuleverlag AG an der ETH Zürich. 1996 (citeulike:8062915)

  23. T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98(12), 10089–10092 (1993)

    Article  CAS  Google Scholar 

  24. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103(19), 8577–8593 (1995)

    Article  CAS  Google Scholar 

  25. W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76(1), 637–649 (1982)

    Article  CAS  Google Scholar 

  26. E.H. Kennard (McGraw-Hill, 1938)

  27. K. Huang, Statistical mechanics (Wiley, New York, 1963)

    Google Scholar 

  28. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J. Hermans, Intermol. Forces. 14, 331–342 (1981)

    Article  CAS  Google Scholar 

  29. H.C. Andersen, J. Chem. Phys. 72(4), 2384–2393 (1980)

    Article  CAS  Google Scholar 

  30. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81(8), 3684–3690 (1984)

    Article  CAS  Google Scholar 

  31. M. Thompson, Molecular docking using ArgusLab, an efficient shape-based search algorithm and the AScore scoring function. In: ACS meeting, Philadelphia (2004)

  32. Accelrys Software Inc. San Diego, CA 92121

  33. R. Todeschini, V. Consonni, A. Mauri, M. Pavan, Dragon Software: Calculation of Molecular Descriptors, Department of Environmental Sciences, University of Milano-Bicocca, and Talete, srl. (2003)

  34. A. Mauri, V. Consonni, M. Pavan, R. Todeschini, DRAGON software: an easy approach to molecular descriptor calculations. Match 56(2), 237–248 (2006)

    CAS  Google Scholar 

  35. S. Wold, A. Ruhe, H. Wold, I.W. Dunn, SIAM J. SciStat. Comp. 5(3), 735–743 (1984)

    Google Scholar 

  36. M. Clark, R.D. Cramer, Quant. Struct. Act. Rel. 12(2), 137–145 (1993)

    Article  CAS  Google Scholar 

  37. B. Bush, R. Nachbar Jr, J. Comput. Aided Mol. Des. (1993). doi:10.1007/bf00124364

    Google Scholar 

  38. R.D. Cramer, J.D. Bunce, D.E. Patterson, I.E. Frank, Quant. Struct. Act. Rel. 7(1), 18–25 (1988)

    Article  Google Scholar 

  39. V. Vapnik, The Nature of Statistical Learning Theory (Springer, 2000)

  40. V. Vapnik, Statistical learning theory (Wiley, New York, 1998)

    Google Scholar 

  41. C. Cortes, V. Vapnik, Support vector machine. Mach. Learn. 20(3), 273–297 (1995)

  42. S. Wold, Technometrics (1978). doi:10.1080/00401706.1978.10489693

    Google Scholar 

  43. A. Golbraikh, A. Tropsha, J. Mol. Graph Model 20(4), 269–276 (2002)

    Article  CAS  Google Scholar 

  44. P.P. Roy, K. Roy, QSAR Comb. Sci. 27(3), 302–313 (2008)

    CAS  Google Scholar 

  45. A. Golbraikh, M. Shen, Z. Xiao, Y.-D. Xiao, K.-H. Lee, A. Tropsha, J. Comput. Aided Mol. Des. 17(2–4), 241–253 (2003)

    Article  CAS  Google Scholar 

  46. M.L. Barreca, N. Iraci, G. Manfroni, R. Gaetani, C. Guercini, S. Sabatini, O. Tabarrini, V. Cecchetti, J Chem Inf Model 54(2), 481–497 (2014)

    Article  CAS  Google Scholar 

  47. M. Bohm, J. Sturzebecher, G. Klebe, J. Med. Chem. 42, 458–477 (1999)

    Article  CAS  Google Scholar 

  48. M. Daszykowski, B. Walczak, D.L. Massart, Anal. Chim. Acta. 468(1), 91–103 (2002)

    Article  CAS  Google Scholar 

  49. R.W. Kennard, LA, Technometrics 11(1), 137–148 (1969)

    Article  Google Scholar 

  50. J.H. Holland, Sci. Am. 267(1), 66–72 (1992)

    Article  Google Scholar 

  51. D.W. Salt, S. Ajmani, R. Crichton, D.J. Livingstone, J. Chem. Inf. Model 47(1), 143–149 (2006)

    Article  Google Scholar 

  52. R. Todeschini, V. Consonni, R. Mannhold, H. Kubinyi, H. Timmerman, Handbook of molecular descriptors (Wiley, 2008)

  53. Z. Mihalic, S. Nikolic, N. Trinajstic, J. Chem. Inf. Comp. Sci. 32(1), 28–37 (1992)

    Article  CAS  Google Scholar 

  54. M. Fernández, J. Caballero, A. Tundidor-Camba, Bioorg. Med. Chem. 14(12), 4137–4150 (2006)

    Article  Google Scholar 

  55. G. Moreau, P. Broto, Nouv. J. Chim. 4, 757–764 (1980)

    CAS  Google Scholar 

  56. J. Galvez, M. Galvez-Llompart, R. Garcia-Domenech, Green Chem. 12(6), 1056–1061 (2010)

    Article  CAS  Google Scholar 

  57. H. Cao, R. Cao, H. Zhang, X. Zheng, D. Gao, Curr. Med. Chem. 15, 1462–1477 (2008)

    Article  CAS  Google Scholar 

  58. I. Musmuca, A. Caroli, A. Mai, N. Kaushik-Basu, P. Arora, R. Ragno, J. Chem. Inf. Model 50, 662–676 (2010)

    Article  CAS  Google Scholar 

  59. H. Kubinyi, Handbook of chemoinformatics (Wiley-VCH Verlag GmbH, 2008)

  60. J.B. Ghasemi, and H. Tavakoli, Sci. Pharm. 80(3), 547–566 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan B. Ghasemi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, J.B., Nazarshodeh, E. & Abedi, H. Molecular docking, 2D and 3D-QSAR studies of new indole-based derivatives as HCV-NS5B polymerase inhibitors. J IRAN CHEM SOC 12, 1789–1799 (2015). https://doi.org/10.1007/s13738-015-0654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0654-4

Keywords

Navigation