Skip to main content

Advertisement

Log in

Non-isocyanate epoxy vinyl ester urethane prepolymer based on diglycidyl ether of bisphenol-A

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Vinyl ester resins (VERs) are one of the main categories of polymeric matrices for fabrication of high-performance commercial composites. They have more desirable properties compared with unsaturated polyester resins. Inserting urethane functional groups in the structure of VERs and producing urethane vinyl ester resin (UVER) improve its impact and chemical resistance, enlongation and toughness. The use of isocyanate as the primary resource in urethane preparation, which is derived from phosgene toxic material, may be associated with environmental hazards; as a result, non-isocyanate polyurethane (NIPU) methods have been developed. Herein, we have described the preparation and characterization of UVER by isocyanate-free system. First, cyclic carbonates of epoxides, 2-hydroxy-3-(4-(oxiran-2-ylmethoxy)butoxy)propyl methacrylate (HOMBPM) and diglycidyl ether of bisphenol-A epoxy resin (DGEBA) were synthesized by treatment of the corresponding epoxides with atmospheric pressure of carbon dioxide and tetrabutylammonium bromide (TBAB) as a catalyst. Then, the as-prepared cyclic carbonates were reacted with ethylenediamine in the presence of different catalysts to produce non-isocyanate epoxy vinyl ester urethane prepolymer. UVER is a potential compound for curing with VERs and fabricating materials with superior mechanical features such as elongation and tensile strength in comparison to VERs. Characterization techniques such as FTIR, 1H and 13C NMR spectroscopy and titration methods for measurements of epoxy equivalent weight (EEW), acid number and amine value are used in the synthesis of the desired compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Scheme 4
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Jiang H, Sun L, Zhang Y, Liu Q, Ru C, Zhang W, Zhao C (2019) Novel biobased epoxy resin thermosets derived from eugenol and vanillin. Polym Degrad Stab 160:45–52

    Article  CAS  Google Scholar 

  2. Tian Y, Wang Q, Shen L, Cui Z, Kou L, Cheng J, Zhang J (2020) A renewable resveratrol-based epoxy resin with high Tg, excellent mechanical properties and low flammability. Chem Eng J 383:123124

    Article  CAS  Google Scholar 

  3. Vanzetto AB, Marocco MV, de Lima GG, Beltrami LV, Zattera AJ, Piazza D (2023) Antimicrobial and mechanical performance of epoxy/graphene-based powder coatings. Iran Polym J 32:1–11

    Article  CAS  Google Scholar 

  4. Ou B, Wang Y, Lu Y (2021) A review on fundamentals and strategy of epoxy-resin-based anticorrosive coating materials. Polym Plast Technol Mater 60:601–625

    CAS  Google Scholar 

  5. Liu Q, Wang D, Li Z, Li Z, Peng X, Liu C, Zhang Y, Zheng P (2020) Recent developments in the flame-retardant system of epoxy resin. Materials 13:2145

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  6. Aghajani A, Ehsani M, Khajavi R, Kalaee M, Zaarei D (2023) Conductive bio-epoxy/boron nitride nanocomposites: Effect of combination of nanotubes and epichlorohydrin surface-modified nanosheets. Iran Polym J 32:661–672

    Article  CAS  Google Scholar 

  7. Hani F, Firouzi A, Islam MR, Sumdani MG (2021) Mechanical and thermal properties of fishbone-based epoxy composites: the effects of thermal treatment. Polym Compos 42:1224–1234

    Article  CAS  Google Scholar 

  8. Azman NA, Islam MR, Parimalam M, Rashidi NM, Mupit M (2020) Mechanical, structural, thermal and morphological properties of epoxy composites filled with chicken eggshell and inorganic CaCO3 particles. Polym Bull 77:805–821

    Article  CAS  Google Scholar 

  9. Syamimi NF, Islam MR, Sumdani MG, Rashidi NM (2020) Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites. Polym Bull 77:2573–2589

    Article  CAS  Google Scholar 

  10. Razi ZM, Islam MR, Parimalam M (2019) Mechanical, structural, thermal and morphological properties of protein (fish scale)-based bisphenol-A composites. Polym Test 74:7–13

    Article  CAS  Google Scholar 

  11. Hanny A, Islam MR, Sumdani MG, Rashidi NM (2019) The effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites. Polym Test 78:105987

    Article  Google Scholar 

  12. Nodehi M (2022) Epoxy, polyester and vinyl ester-based polymer concrete: a review. Innov Infrastruct Solut 7:64

    Article  Google Scholar 

  13. Johnson RD, Arumugaprabu V, Ko TJ (2019) Mechanical property, wear characteristics, machining and moisture absorption studies on vinyl ester composites—a review. SILICON 11:2455–2470

    Article  CAS  Google Scholar 

  14. Zhao YZ, Chu Y, Xu YJ, Zhu P, Wang YZ (2023) Highly flame-retardant vinyl ester resins with well-balanced comprehensive performance. J Chem Eng 464:142659

    Article  CAS  Google Scholar 

  15. Zeng G, Zhang W, Zhang X, Zhang W, Du J, He J, Yang R (2020) Study on flame retardancy of APP/PEPA/MoO3 synergism in vinyl ester resins. J Appl Polym Sci 137:49026

    Article  CAS  Google Scholar 

  16. Bach QV, Vu CM, Vu HT, Nguyen DD (2020) Using hybrid fillers of nano/micro glass fiber and fly ash as novel toughener for enhancing the interlaminar fracture toughness of vinyl ester resin filled with carbon fiber-based composite. Compos Interf 27:289–305

    Article  ADS  CAS  Google Scholar 

  17. Zhang N, Cui X, Wang C, Wu S, Zhao Y, Qi Y, Hou X, Jin H, Deng T (2023) Degradation of vinyl ester resin and its composites via cleavage of ester bonds to recycle valuable chemicals and produce polyurethane. Waste Manag 155:260–268

    Article  PubMed  CAS  Google Scholar 

  18. Duan H, Ji S, Yin T, Tao X, Chen Y, Ma H (2019) Phosphorus–nitrogen-type fire-retardant vinyl ester resin with good comprehensive properties. J Appl Polym Sci 136:47997

    Article  Google Scholar 

  19. Zhang W, Zhang X, Zeng G, Wang K, Zhang W, Yang R (2019) Flame retardant and mechanism of vinyl ester resin modified by octaphenyl polyhedral oligomeric silsesquioxane. Polym Adv Technol 30:3061–3072

    Article  CAS  Google Scholar 

  20. Cabo MC Jr, Prabhakar MN, Song JI (2023) Characterization of the thermoset blend of a vinyl ester resin with eco-friendly epoxidized corn oil as a potential sustainable composite matrix resin. Ind Eng Chem Res 62:7962–7974

    Article  Google Scholar 

  21. Sharmin E, Zafar F (2012) Polyurethane: an introduction. Rijeka, Croatia

  22. Jiang L, Ren Z, Zhao W, Liu W, Liu H, Zhu C (2018) Synthesis and structure/properties characterizations of four polyurethane model hard segments. R Soc Open Sci 25:180536

    Article  Google Scholar 

  23. Khiati Z, Mrah L (2023) Impact of clay modifier on structure, thermal, mechanical and transport properties in polyurethane/maghnite nanocomposites as barrier materials. Iran Polym J 32:829–840

    Article  CAS  Google Scholar 

  24. Akindoyo JO, Beg M, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications—a review. RSC Adv 6:114453–114482

    Article  ADS  CAS  Google Scholar 

  25. Fink JK (2017) Reactive polymers: fundamentals and applications: a concise guide to industrial polymers. William Andrew, Norwich, NY

    Google Scholar 

  26. Chen W, Qiao H, Zhang D, Tian X, Jin L (2023) Silane coupling agent γ-aminopropyltriethoxysilane-modified nanoparticles/polyurethane elastomer nanocomposites. Iran Polym J 16:1–3

    Google Scholar 

  27. Monie F, Grignard B, Thomassin JM, Mereau R, Tassaing T, Jerome C, Detrembleur C (2020) Chemo-and regioselective additions of nucleophiles to cyclic carbonates for the preparation of self-blowing non-isocyanate polyurethane foams. Angew Chem 59:17033–17041

    Article  CAS  Google Scholar 

  28. Boisaubert P, Kébir N, Schuller AS, Burel F (2020) Photo-crosslinked non-isocyanate polyurethane acrylate (NIPUA) coatings through a transurethane polycondensation approach. Polymer 206:122855

    Article  CAS  Google Scholar 

  29. Zareanshahraki F, Asemani HR, Skuza J, Mannari V (2020) Synthesis of non-isocyanate polyurethanes and their application in radiation-curable aerospace coatings. Prog Org Coat 138:105394

    Article  CAS  Google Scholar 

  30. Stachak P, Łukaszewska I, Hebda E, Pielichowski K (2021) Recent advances in fabrication of non-isocyanate polyurethane-based composite materials. Materials 14:3497

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  31. Liang H, Gao Q (2019) Synthesis and properties of non-isocyanate polyurethane based on aromatic amine. IOP Conf Ser: Mater Sci Eng 612:022030

    Article  CAS  Google Scholar 

  32. Samoilenko T, Yashchenko L, Yarova N, Brovko O (2023) Epoxyurethane polymer matrices for hemp woody core reinforced biocomposites synthesized with the use of plant-originated oils. Iran Polym J 32:403–415

    Article  CAS  Google Scholar 

  33. Khatoon H, Iqbal S, Irfan M, Darda A, Rawat NK (2021) A review on the production, properties and applications of non-isocyanate polyurethane: a greener perspective. Prog Org Coat 154:106124

    Article  CAS  Google Scholar 

  34. Gomez-Lopez A, Grignard B, Calvo I, Detrembleur C, Sardon H (2020) Monocomponent non-isocyanate polyurethane adhesives based on a sol–gel process. ACS Appl Polym Mater 2:1839–1847

    Article  CAS  Google Scholar 

  35. El Khezraji S, Ben Youcef H, Belachemi L, Lopez Manchado MA, Verdejo R, Lahcini M (2023) Recent progress of non-isocyanate polyurethane foam and their challenges. Polymers 15:254

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Richardson MO (2000) Micro-heterogeneity of urethane vinylester resin networks. Polymer 41:6843–6849

    Article  CAS  Google Scholar 

  37. Ghasemi S, Ghezelsofloo M (2023) Isocyanate-free urethane vinyl ester resin: preparation, characterization and thermal and mechanical properties investigation. Chem Pap 77:1165–1180

    Article  CAS  Google Scholar 

  38. Ghasemi S, Ghezelsofloo M, Naeimi M, Tamami B, Allahyari H (2022) Isocyanate-free urethane modified vinyl ester resin: synthesis, characterization and mechanical properties. Polym Int 71:1295–1307

    Article  CAS  Google Scholar 

  39. Khatri CA, Stansbury JW, Schultheisz CR, Antonucci JM (2003) Synthesis, characterization and evaluation of urethane derivatives of bis-GMA. Dent Mater 19:584–588

    Article  PubMed  CAS  Google Scholar 

  40. Ochiai B, Sato SI, Endo T (2007) Crosslinkable polyurethane bearing a methacrylate structure in the side chain. J Polym Sci Part A Polym Chem 45:3400–3407

    Article  ADS  CAS  Google Scholar 

  41. Rokicki G, Parzuchowski PG, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26:707–761

    Article  CAS  Google Scholar 

  42. Schimpf V, Asmacher A, Fuchs A, Bruchmann B, Mülhaupt R (2019) Polyfunctional acrylic non-isocyanate hydroxyurethanes as photocurable thermosets for 3D printing. Macromolecules 52:3288–3297

    Article  ADS  CAS  Google Scholar 

  43. Liu KT, Chuang JY, Jeng RJ, Leung MK (2021) Sustainable synthesis of cyclic carbonates from terminal epoxides by a highly efficient CaI2/1,3-bis[tris(hydroxymethyl)-methylamino]-propane catalyst. ACS Omega 6:27279–27287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sheng X, Ren G, Qin Y, Chen X, Wang X, Wang F (2015) Quantitative synthesis of bis(cyclic carbonate)s by iron catalyst for non-isocyanate polyurethane synthesis. Green Chem 17:373–379

    Article  CAS  Google Scholar 

  45. Chen Q, Gao K, Peng C, Xie H, Zhao ZK, Bao M (2015) Preparation of lignin/glycerol-based bis(cyclic carbonate) for the synthesis of polyurethanes. Green Chem 17:4546–4551

    Article  CAS  Google Scholar 

  46. Atta AM, El-Saeed SM, Farag RK (2006) New vinyl ester resins based on rosin for coating applications. React Funct Polym 66:1596–1608

    Article  CAS  Google Scholar 

  47. Aguiar KR, Santos VG, Eberlin MN, Rischka K, Noeske M, Tremiliosi-Filho G, Rodrigues-Filho UP (2014) Efficient green synthesis of bis(cyclic carbonate) poly(dimethylsiloxane) derivative using CO2 addition: a novel precursor for synthesis of urethanes. RSC Adv 4:24334–24343

    Article  ADS  CAS  Google Scholar 

  48. Maisonneuve L, More AS, Foltran S, Alfos C, Robert F, Landais Y, Tassaing T, Grau E, Cramail H (2014) Novel green fatty acid-based bis-cyclic carbonates for the synthesis of isocyanate-free poly(hydroxyurethane amide)s. RSC Adv 4:25795–25803

    Article  ADS  CAS  Google Scholar 

  49. Błażek K, Beneš H, Walterová Z, Abbrent S, Eceiza A, Calvo-Correas T, Datta J (2021) Synthesis and structural characterization of bio-based bis(cyclic carbonate)s for the preparation of non-isocyanate polyurethanes. Polym Chem 12:1643–1652

    Article  Google Scholar 

  50. Jalilian M, Yeganeh H, Haghighi MN (2008) Synthesis and properties of polyurethane networks derived from new soybean oil-based polyol and a bulky blocked polyisocyanate. Polym Int 57:1385–1394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the partial support of this study by the Research Council of Shiraz University. Farassan Manufacturing and Industrial Company is gracefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Ghasemi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 307 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S., Ghezelsofloo, M., Naeimi, M. et al. Non-isocyanate epoxy vinyl ester urethane prepolymer based on diglycidyl ether of bisphenol-A. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01289-7

Keywords

Navigation