Skip to main content

Advertisement

Log in

Polypropylene homopolymer/unmodified minor mineral fuller’s earth composites: a comprehensive experimental study on mechanical and thermal properties

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

This paper provides a thorough investigation of the mechanical, thermal and morphological properties of polypropylene homopolymer (HPP) reinforced with unmodified minor mineral fuller’s earth (UMMFE) to comprehend and evaluate the properties over conventional polypropylene. UMMFE was characterised by FTIR, TGA, SEM and particle size analysis. HPP/UMMFE composites were prepared on a co-rotating twin-screw extruder with a varied content ranging from 0 to 5% (by weight). The dispersibility of HPP and UMMFE was analyzed using scanning electron microscopy (SEM). Mechanical tests showed an increment of 14% in the tensile modulus for HPP5, in which UMMFE demonstrated a strong reinforcing effect to sustain stress, also resulting in improved tensile strength-at-yield by 13%. Also the flexural modulus increased, showing a 28% rise from 1652 MPa (HPP) to 2122 MPa (HPP5). It was found that UMMFE particles in the HPP matrix affected the interfacial properties of the composites. The comparative investigation of thermogravimetric analysis (TGA) also revealed that the thermal stability of the composites reinforced with UMMFE at 5% (by weight) increased by approximately 56.37%. HPP/UMMFE composites exhibited optimum performance at 5% (by weight) clay loading. This study aims to use UMMFE clay as a potential filler in various sectors of application like automobile, manufacturing, construction, packaging and act as a cushion in the scenario of scarcity of material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharma GP, Agarwal R, Bansal A, Agrawal NK, Singh R (2020) Effect of climatic conditions on the thermal conductivity of earth fuller. J Mater Today Proc 30:183–189. https://doi.org/10.1016/j.matpr.2020.05.738

    Article  Google Scholar 

  2. Lee MS, Tiwari D (2012) Organo and inorganic-organic-modified clays in the remediation of aqueous solution. J Appl Clay Sci 59:84–102. https://doi.org/10.1016/j.clay.2012.02.006

    Article  CAS  Google Scholar 

  3. Encyclopaedia Britannica Editors (2020) Fuller’s earth. https://www.britannica.com/science/fullers-earth

  4. Indian Minerals Yearbook (2020) (Part III: mineral reviews) 59th edition minor minerals 30.10 fuller’s earth, Government of India, Ministry of Mines, Indian Bureau of Mines, Indira Bhavan, Civil Lines, Nagpur-440 001

  5. Maddah HA (2016) Polypropylene as a promising plastic: a review. Am J Polym Sci 6:1–11. https://doi.org/10.5923/j.ajps.20160601.01

    Article  CAS  Google Scholar 

  6. Cathelin C, Dorini M, Mei G, Pater J, Rinaldi R (2018). In: Kirk RE, Othmer DF, Grayson M, Eckroth M (eds) Encyclopedia of chemical technology, vol 5. Wiley, New York. https://doi.org/10.1002/0471238961.1615122512090502.a01.pub3

    Chapter  Google Scholar 

  7. Jamshidian M, Tehrany EA, Imran M, Akhtar MJ, Cleymand F, Desobry S (2012) Structural, mechanical and barrier properties of active PLA-antioxidant films. J Food Eng 110:380–389. https://doi.org/10.1016/j.jfoodeng.2011.12.034

    Article  CAS  Google Scholar 

  8. Rhim JW, Hong SI, Ha CS (2009) Tensile, water vapour barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol 42:612–617. https://doi.org/10.1016/j.lwt.2008.02.015

    Article  CAS  Google Scholar 

  9. Kausar A (2017) Physical properties of hybrid polymer/clay composites. Hybrid Polym Compos Mater Prop Charact 115–132. https://doi.org/10.1016/B978-0-08-100787-7.00005-6

  10. Zeng QH, Yu AB, Max LuGQ, Paul DR (2005) Clay-based polymer nanocomposites: research and commercial development. J Nanosci Nanotechnol 5:1574–1592. https://doi.org/10.1166/jnn.2005.411

    Article  CAS  PubMed  Google Scholar 

  11. Jung BN, Kang D, Cheon S, Shim JK, Hwang SW (2019) The addition effect of hollow glass microsphere on the dispersion behaviour and physical properties of polypropylene/clay nanocomposite. J Appl Polym Sci 136:47476. https://doi.org/10.1002/app.47476

    Article  CAS  Google Scholar 

  12. Okonkwo EG, Anabaraonye CN, Daniel MK, Pume CC, Egoigwe SV, Okeke PE, Whyte FG, Okoani AO (2020) Mechanical and thermomechanical properties of clay-Bambara nut shell polyester bio-composite. Int J Adv Manuf Technol 108:2483–2496. https://doi.org/10.1007/s00170-020-05570-w

    Article  Google Scholar 

  13. Essabir H, Raji M, Laaziz SA, Rodrique D, Bouhfid R, Qaiss A (2018) Thermo-mechanical performances of polypropylene bio composites based on untreated, treated and compatibilized spent coffee grounds. Compos B 149:1–11. https://doi.org/10.1016/j.compositesb.2018.05.020

    Article  CAS  Google Scholar 

  14. Lee C, Pang MM, Koay SC, Choo HL, Tshai KY (2020) Talc filled polylactic-acid biobased polymer composites: tensile, thermal and morphological properties. SN Appl Sci 2:354. https://doi.org/10.1007/s42452-020-2172-y

    Article  CAS  Google Scholar 

  15. Li K, Yue S, Li X, Ahmad N, Cheng Q, Wang B, Zhang X, Li S, Li Y, Huang G, Kang H (2022) High efficiency perovskite solar cells employing quasi-2D Ruddlesden–Popper/Dion–Jacobson heterojunctions. Adv Funct Mater 32:2200024. https://doi.org/10.1002/adfm.202200024

    Article  CAS  Google Scholar 

  16. Ahmad N, Zhao Y, Ye F, Zhao J, Chen S, Zheng Z, Fan P, Yan C, Li Y, Su Z, Zhang X (2023) Cadmium-free Kesterite thin-film solar cells with high efficiency approaching 12%. Adv Sci 10:2302869. https://doi.org/10.1002/advs.202302869

    Article  CAS  Google Scholar 

  17. Mines and Minerals (Development and Regulation) Act, 1957 (No. 67 of 1957) (As amended up to 10th May, 2012) Issued by Controller: General, Indian Bureau of Mines, Nagpur August, 2012

  18. Wang Y, Chen FB, L, YC, Wu KC, (2004) Melt processing of polypropylene/clay nanocomposites modified with maleated polypropylene compatibilizers. Compos Part B 35:111–124. https://doi.org/10.1016/s1359-8368(03)00049-0

    Article  Google Scholar 

  19. Yaghmaeiyan N, Mirzaei M, Delghavi R (2022) Montmorillonite clay: introduction and evaluation of its applications in different organic syntheses as catalyst: a review. Results Chem 4:100549. https://doi.org/10.1016/j.rechem.2022.100549

    Article  CAS  Google Scholar 

  20. Encyclopaedia Britannica Editors (2018) Kaolinite. Encyclopedia Britannica. https://www.britannica.com/science/kaolinite

  21. Verma D, Goh KL (2019) Functionalized graphene-based nanocomposites for energy applications. Synth Process Appl Micro Nano Technol 219–243. https://doi.org/10.1016/b978-0-12-814548-7.00011-8

  22. Billon N, Romain C, Jean Luc B, Guilhem R (2023) Viscoelastic properties of polypropylene during crystallization and melting: experimental and phenomenological modelling. Polymers 15:3846. https://doi.org/10.3390/polym15183846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bajpai AK, Vishwakarma N (2003) Adsorption of polyvinylalcohol onto Fuller’s earth surfaces. Colloids Surf A 220:117–130. https://doi.org/10.1016/S0927-7757(03)00073-6

    Article  CAS  Google Scholar 

  24. Latip W, Feizal V, Khim OK, Mohd Kasim NA (2021) Immobilization of mutant phosphotriesterase on fuller’s earth enhanced the stability of the enzyme. Catalysts 11:983. https://doi.org/10.3390/catal11080983

    Article  CAS  Google Scholar 

  25. Purcell RJ, Jr. Arm G, Parker DC (2002) US Patent 6,444,601. https://patentimages.storage.googleapis.com/3a/4b/21/d346b15b88bee9/US6444601.pdf

  26. Fang J, Zhang L, Sutton D, Wang X, Lin T (2012) Needleless melt-electrospinning of polypropylene nanofibres. J Nanomater 1–9. https://doi.org/10.1155/2012/382639

  27. Othman N, Ismail H, Jaafar M (2004) Preliminary study on application of bentonite as filler in polypropylene composites. Polym Plast Technol Eng 43:713–730. https://doi.org/10.1081/ppt-120038061

    Article  CAS  Google Scholar 

  28. Othman N, Ismail H, Mariatti M (2006) Effect of compatibilizers on mechanical and thermal properties of bentonite filled polypropylene composites. Polym Degrad Stab 91:1761–1774. https://doi.org/10.1016/j.polymdegradstab.2005

    Article  CAS  Google Scholar 

  29. Gonzalez I, Eguiazabal JI, Nazabal J (2006) Nanocomposites based on a polyamide 6/maleated styrene-butylene-co-ethylene-styrene blend: effects of clay loading on morphology and mechanical properties. Eur Polym J 42:2905–2913. https://doi.org/10.1007/s00289-020-03265-6

    Article  CAS  Google Scholar 

  30. Selezneva M, Swolfs Y, Katalagarianakis A, Ichikawa T, Hirano N, Taketa I, Karaki T, Verpoest I, Gorbatikh L (2018) The brittle-to-ductile transition in tensile and impact behavior of hybrid carbon fibre/self-reinforced polypropylene composites. Compos A 109:20–30. https://doi.org/10.1016/j.compositesa.2018.02.034

    Article  CAS  Google Scholar 

  31. Chen L, Wong SC, Pisharath S (2003) Fracture properties of nanoclay-filled polypropylene. J Appl Polym Sci 88:3298–3305. https://doi.org/10.1002/app.12153

    Article  CAS  Google Scholar 

  32. Unnikrishnan L, Mohanty S, Nayak S, Ali A (2011) Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: effect of organoclay on thermal, mechanical and flammability properties. Mater Sci Eng 3943–3951. https://doi.org/10.1016/j.msea.2011.01.071

  33. Mekhzoum ME, Raji M, Rodrigue D, Bouhfid R (2020) The effect of benzothiazolium surfactant modified montmorillonite content on the properties of polyamide 6 nanocomposites. Appl Clay Sci 185:105417–105430. https://doi.org/10.1016/j.clay.2019.105417

    Article  CAS  Google Scholar 

  34. Gao X, Lx M, Jin RG, Zhang LQ, Tian M (2007) Structure and mechanical properties of PP/EPDM/Attapulgite ternary blends. Polym J 39:1011–1017. https://doi.org/10.1295/polymj.PJ2006166

    Article  CAS  Google Scholar 

  35. Sharma SK, Nema AK, Nayak SK (2012) Effect of modified clay on mechanical and morphological properties of ethylene octane copolymer-polypropylene nanocomposites. J Compos Mater 46:1139–1150. https://doi.org/10.1177/0021998311413686

    Article  CAS  Google Scholar 

  36. Rahman NA, Hassan A, Yahya R, Lafia-Araga RA, Hornsby PR (2012) Micro-structural, thermal, and mechanical properties of injection-molded glass fiber/nanoclay/polypropylene composites. J Reinf Plast Compos 31:269. https://doi.org/10.1177/0731684411435727

    Article  CAS  Google Scholar 

  37. Mohamed MR, Amer AA, Soliman AM, El-Ghazawy RA, Shaker NO, Naguib HM, Kandil UF (2019) Surface activation of wood plastic composites (WPC) for enhanced adhesion with epoxy coating. Mater Perform Charact 8:22–40. https://doi.org/10.1520/MPC20180034

    Article  CAS  Google Scholar 

  38. Essabir H, Raji M, Bouhfid R, Qaiss AK (2016) Nanoclay and natural fibers based hybrid composites: mechanical, morphological, thermal and rheological properties. Nanoclay reinforced polymer composites. Springer, Singapore. https://doi.org/10.1007/978-981-10-0950-1_2

    Chapter  Google Scholar 

  39. Ahmad N, Mahmood T (2022) Preparation and properties of 4-aminobenzoic acid-modified polyvinyl chloride/titanium dioxide and PVC/TiO2 based nanocomposites membranes. Polym Polym Compos 30:09673911221099301. https://doi.org/10.1177/09673911221099301

    Article  CAS  Google Scholar 

  40. Tarapow JA, Bernal CR, Alvare VA (2009) Mechanical properties of polypropylene/clay nanocomposites: effect of clay content, polymer/clay compatibility, and processing conditions. J App Polym Sci 111:768–778. https://doi.org/10.1002/app.29066

    Article  CAS  Google Scholar 

  41. Doumeng M, Makhlouf L, Berthet F, Marsan O, Delbé K, Denape J, Chabert F (2020) A comparative study of the crystallinity of Polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polym Test 93:106878. https://doi.org/10.1016/j.polymertesting.2020

    Article  Google Scholar 

  42. Huda MS, Drzal LT, Ray D, Mohanty AK, Mishra M (2008) Natural-fiber composites in the automotive sector. Prop Perform Nat Fibre Compos 221–268. https://doi.org/10.1533/9781845694593.2.221

  43. Erbas KE, Kiziltas A, Bollin SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA-cellulose based nanocomposites. Carbohydr Polym 127:381–389. https://doi.org/10.1016/j.carbpol.2015.03.029

    Article  CAS  Google Scholar 

  44. Basara C, Yilmazer U, Bayram G (2005) Synthesis and characterization of epoxy based nanocomposites. J App Polym Sci 98:1081–1086. https://doi.org/10.1002/app.22242

    Article  CAS  Google Scholar 

  45. Shelesh-Nezhad K, Orang H, Motallebi M (2013) Crystallization shrinkage and mechanical characteristics of polypropylene/CaCO3 nanocomposites. J Thermoplast Compos Mater 26:544–554. https://doi.org/10.1177/0892705712454866

    Article  CAS  Google Scholar 

  46. Dikobe DG, Luyt AS (2010) Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. EXPRESS Polym Lett 4:729–741. https://doi.org/10.3144/expresspolymlett.2010.88

    Article  CAS  Google Scholar 

  47. Leszczynska A, Pielichowski K (2008) Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim 93:677–687. https://doi.org/10.1007/s10973-008-9128-6

    Article  CAS  Google Scholar 

  48. Ashenai GF, Ghorbani A, Ghasemi I (2017) Mechanical, thermal and dynamic mechanical properties of PP/GF/XGNP nanocomposites. Mech Compos Mater 53:187–198. https://doi.org/10.1007/s11029-017-9647-y

    Article  CAS  Google Scholar 

  49. Li L, Yumei J (2013) Effects of attapulgite on crystallization and thermal stability properties of poly (lactic acid). Acta Materiae Compositae Sinica 30:75–82

    Google Scholar 

  50. Zhang Y, Yu C, Hu P, Tong W, Lv F, Chu PK, Wang H (2016) Mechanical and thermal properties of palygorskite poly(butylene succinate) nanocomposite. Appl Clay Sci 119:96–102. https://doi.org/10.1016/j.clay.2015.07.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajvardhan Jaideva.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaideva, R., Mondal, S. Polypropylene homopolymer/unmodified minor mineral fuller’s earth composites: a comprehensive experimental study on mechanical and thermal properties. Iran Polym J 33, 659–669 (2024). https://doi.org/10.1007/s13726-023-01272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01272-8

Keywords

Navigation