Skip to main content
Log in

Antibiotic delivery based on poly(lactic-co-glycolic) acid and natural polymers: a biocomposite strategy

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Polymer controlled release systems are being widely studied as new therapeutic options. The main objectives of these systems are active principle levels control, doses number optimization, secondary effects reduction and patient acceptance. The aim of this study was to design systems for tilmicosin and clarithromycin delivery. To achieve this goal, synthetic and natural polymers, combined with drug saturated suspensions, were evaluated to improve encapsulation efficiencies and release rates of the active principles. Firstly, two systems were studied: poly(lactic-co-glycolic) acid microparticles and biopolymer beads. Depending on the antibiotic used, the microparticles reached encapsulation efficiencies (EE) of 30–90%. Depending on the type of antibiotic and synthesis factors, beads showed EE of 0–40%. The drug release rates were lower for microparticles than those for beads. On the other hand, the inclusion of microparticles into beads was explored as an option for the preparation of biocomposite systems. The release rate of tilmicosin was diminished while that of clarithromycin was not improved. The investigated systems can be an interesting approach for new therapeutic options in the fields of animal and human health.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Medlicott NJ, Waldron NA, Foster TP (2004) Sustained release veterinary parenteral products. Adv Drug Deliv Rev 56:1345–1365. https://doi.org/10.1016/j.addr.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  2. Campbell CSJ, Delgado-Charro MB, Camus O, Perera S (2016) Comparison of drug release from poly(lactide-co-glycolide) microspheres and novel fibre formulations. J Biomater Appl 30:1142–1153. https://doi.org/10.1177/0885328215617327

    Article  CAS  PubMed  Google Scholar 

  3. Zhang S, Liu Z, Guo X, Cheng L, Wang Z, Shen J (2008) Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 875:399–404. https://doi.org/10.1016/j.jchromb.2008.09.035

    Article  CAS  PubMed  Google Scholar 

  4. Lee BK, Yun YH, Park K (2015) Smart nanoparticles for drug delivery: boundaries and opportunities. Chem Eng Sci 125:158–164. https://doi.org/10.1016/j.ces.2014.06.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deb PK, Kokaz SF, Abed SN, Paradkar A, Tekade RK (2019) In: Rakesh K. Tekade (ed) Basic fundamentals of drug delivery. Academic Press

  6. Anderson JM, Shive MS (2012) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 64:72–82. https://doi.org/10.1016/j.addr.2012.09.004

    Article  Google Scholar 

  7. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490. https://doi.org/10.1016/S0142-9612(00)00115-0

    Article  CAS  PubMed  Google Scholar 

  8. Busatto C, Pesoa J, Helbling I, Luna J, Estenoz D (2017) Heterogeneous hydrolytic degradation of poly(lactic-co-glycolic acid) microspheres: mathematical modeling. J Appl Polym Sci 134:45464. https://doi.org/10.1002/app.45464

    Article  CAS  Google Scholar 

  9. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397. https://doi.org/10.3390/polym3031377

    Article  CAS  PubMed  Google Scholar 

  10. Mamani PL, Ruiz-Caro R, Veiga MD (2012) Matrix tablets: the effect of hydroxypropyl methylcellulose/anhydrous dibasic calcium phosphate ratio on the release rate of a water-soluble drug through the gastrointestinal tract I. in vitro tests. AAPS PharmSciTech 13:1073–1083. https://doi.org/10.1208/s12249-012-9829-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheptea C, Holban M, Peptu C, Lionte C, Sunel V, Popa M, Desbrieres J (2013) Synthesis and antimicrobial activity of new amidic derivatives of 5-nitroindazol-1-yl acetic acid encapsulated into alginate/pectin particles. Cellul Chem Technol 47:23–29

    CAS  Google Scholar 

  12. Islan GA, Castro GR (2014) Tailoring of alginate-gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa. Drug Deliv 21:615–626. https://doi.org/10.3109/10717544.2013.870257

    Article  CAS  PubMed  Google Scholar 

  13. Islan GA, Mukherjee A, Castro GR (2015) Development of biopolymer nanocomposite for silver nanoparticles and Ciprofloxacin controlled release. Int J Biol Macromol 72:740–750. https://doi.org/10.1016/j.ijbiomac.2014.09.020

    Article  CAS  PubMed  Google Scholar 

  14. Karp F, Satler FS, Busatto CA, Luna JA, Estenoz DA, Turino LN (2021) Modulating drug release from poly(lactic-co-glycolic) acid microparticles by the addition of alginate and pectin. J Appl Polym Sci 138:50293. https://doi.org/10.1002/app.50293

    Article  CAS  Google Scholar 

  15. Zhou K, Wang X, Chen D, Yuan Y, Wang S, Li C, Yan Y, Liu Q, Shao L, Huang L, Yuan Z, Xie S (2019) Enhanced treatment effects of tilmicosin against staphylococcus aureus cow mastitis by self-assembly sodium alginate-nhitosan nanogel. Pharmaceutics 11:524. https://doi.org/10.3390/pharmaceutics11100524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacks S, Giguère S, Gronwall RR, Brown MP, Merritt KA (2002) Disposition of oral clarithromycin in foals. J Vet Pharmacol Ther 25:359–362. https://doi.org/10.1046/j.1365-2885.2002.00420.x

    Article  CAS  PubMed  Google Scholar 

  17. Foster SF, Martin P, Davis W, Allan GS, Mitchell DH, Malik R (1999) Chronic pneumonia caused by Mycobacterium thermoresistibile in a cat. J Small Anim Pract 40:433–438. https://doi.org/10.1111/j.1748-5827.1999.tb03118.x

    Article  CAS  PubMed  Google Scholar 

  18. Hansen MP, Thorning S, Aronson JK, Beller EM, Glasziou PP, Hoffmann TC, Del Mar CB (2015) Adverse events in patients taking macrolide antibiotics versus placebo for any indication. Cochrane Database Syst Rev 2015:1–8. https://doi.org/10.1002/14651858.CD011825

    Article  CAS  Google Scholar 

  19. Cui Y, Luo L, Li C, Chen P, Chen Y (2018) Long-term macrolide treatment for the prevention of acute exacerbations in COPD: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 13:3813–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han C, Qi CM, Zhao BK, Cao J, Xie SY, Wang SL, Zhou WZ (2009) Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies. J Vet Pharmacol Ther 32:116–123. https://doi.org/10.1111/j.1365-2885.2008.01009.x

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Q, Yang H, Sahito B, Li X, Peng L, Gao X, Ji H, Wang L, Jiang S, Guo D (2020) Nanostructured lipid carriers with exceptional gastrointestinal stability and inhibition of P-gp efflux for improved oral delivery of tilmicosin. Colloids Surfaces B Biointerfaces 187:110649. https://doi.org/10.1016/j.colsurfb.2019.110649

    Article  CAS  PubMed  Google Scholar 

  22. Onyeji CO, Nightingale CH, Nicolau DP, Quintiliani R (1994) Efficacies of liposome-encapsulated clarithromycin and ofloxacin against Mycobacterium avium-M. intracellulare complex in human macrophages. Antimicrob Agents Chemother 38:523–527. https://doi.org/10.1128/AAC.38.3.523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salem II, Düzgünes N (2003) Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages. Int J Pharm 250:403–414. https://doi.org/10.1016/S0378-5173(02)00552-5

    Article  CAS  PubMed  Google Scholar 

  24. Ullah S, Shah MR, Shoaib M, Imran M, Elhissi AMA, Ahmad F, Ali I, Shah SWA (2016) Development of a biocompatible creatinine-based niosomal delivery system for enhanced oral bioavailability of clarithromycin. Drug Deliv 23:3480–3491. https://doi.org/10.1080/10717544.2016.1196768

    Article  CAS  PubMed  Google Scholar 

  25. Pan-In P, Banlunara W, Chaichanawongsaroj N, Wanichwecharungruang S (2014) Ethyl cellulose nanoparticles: clarithomycin encapsulation and eradication of H. pylori. Carbohydr Polym 109:22–27. https://doi.org/10.1016/j.carbpol.2014.03.025

    Article  CAS  PubMed  Google Scholar 

  26. Gattani SG, Savaliya PJ, Belgamwar VS (2010) Floating-mucoadhesive beads of clarithromycin for the treatment of Helicobacter pylori infection. Chem Pharm Bull 58:782–787. https://doi.org/10.1248/cpb.58.782

    Article  CAS  Google Scholar 

  27. Sarode S, Sagar G, Kale M, Nimase P, Kulkarni A, Firke S, Firke B, Warke P, Chaudhari M (2010) Preparation and evaluation of floating calcium alginate beads of Clarithromycin. Res J Pharm Dos Forms Technol 2:173–177

    Google Scholar 

  28. Anversa Dimer F, de Souza C-W, Goes A, Cirnski K, Herrmann J, Schmitt V, Pätzold L, Abed N, De Rossi C, Bischoff M, Couvreur P, Müller R, Lehr CM (2020) PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus aureus and Mycobacterium abscessus. Nanomed Nanotechnol Biol Med 24:102125. https://doi.org/10.1016/j.nano.2019.102125

    Article  CAS  Google Scholar 

  29. Alenezi A, Naito Y, Terukina T, Prananingrum W, Jinno Y, Tagami T, Ozeki T, Galli S, Jimbo R (2018) Controlled release of clarithromycin from PLGA microspheres enhances bone regeneration in rabbit calvaria defects. J Biomed Mater Res Part B 106:201–208. https://doi.org/10.1002/jbm.b.33844

    Article  CAS  Google Scholar 

  30. Karp F, Turino LN, Helbling IM, Islan GA, Luna JA, Estenoz DA (2021) In situ formed implants based on PLGA and Eudragit blends for novel Florfenicol controlled release formulations. J Pharm Sci 110:1270–1278. https://doi.org/10.1016/j.xphs.2020.11.006

    Article  CAS  PubMed  Google Scholar 

  31. Karp F, Turino LN, Estenoz D, Castro GR, Islan GA (2019) Encapsulation of florfenicol by in situ crystallization into novel alginate-Eudragit RS® blended matrix for pH modulated release. J Drug Deliv Sci Technol 54:101241. https://doi.org/10.1016/j.jddst.2019.101241

    Article  CAS  Google Scholar 

  32. Turino LN, Mariano RN, Mengatto LN, Luna JA (2015) In vitro evaluation of suspoemulsions for in situ forming polymeric microspheres and controlled release of progesterone. J Microencapsul 32:538–546. https://doi.org/10.3109/02652048.2015.1065914

    Article  CAS  PubMed  Google Scholar 

  33. Voo WP, Ravindra P, Tey BT, Chan ES (2011) Comparison of alginate and pectin based beads for production of poultry probiotic cells. J Biosci Bioeng 111:294–299. https://doi.org/10.1016/j.jbiosc.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  34. Dyankova SM, Solak AO (2014) Preparation and characterization of composite hydrocolloid films from sodium alginate and high methoxyl pectin. Bulg Chem Commun 46:368–374

    CAS  Google Scholar 

  35. Islan GA, De Verti IP, Marchetti SG, Castro GR (2012) Studies of ciprofloxacin encapsulation on alginate/pectin matrixes and its relationship with biodisponibility. Appl Biochem Biotechnol 167:1408–1420

    Article  CAS  PubMed  Google Scholar 

  36. Wischke C, Schwendeman SP (2008) Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 364:298–327. https://doi.org/10.1016/j.ijpharm.2008.04.042

    Article  CAS  PubMed  Google Scholar 

  37. Derkach SR, Voron’ko NG, Sokolan NI, Kolotova DS, Kuchina YA, (2020) Interactions between gelatin and sodium alginate: UV and FTIR studies. J Dispers Sci Technol 41:690–698. https://doi.org/10.1080/01932691.2019.1611437

    Article  CAS  Google Scholar 

  38. Sahito B, Zhang Q, Yang H, Peng L, Gao X, Kashif J, ul Aabdin Z, Jiang S, Wang L, Guo D (2020) Synthesis of tilmicosin nanostructured lipid carriers for improved oral delivery in broilers: physiochemical characterization and cellular permeation. Molecules 25:315. https://doi.org/10.3390/molecules25020315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Avramov Ivić ML, Petrović SD, Vonmoos F, Mijin DZ, Zivković PM, Drljević KM (2008) The electrochemical behavior of commercial clarithromycin and spectroscopic detection of its structural changes. Russ J Electrochem 44:931–936. https://doi.org/10.1134/S1023193508080089

    Article  CAS  Google Scholar 

  40. López DF, Osorio O, Checa OE (2019) Propiedades mecánicas de un material de pectina para revestimiento de fibras naturales utilizadas en aplicaciones agrícolas. Inf Tecnológica 30:189–198. https://doi.org/10.4067/S0718-07642019000300189

    Article  Google Scholar 

  41. Karp F, Busatto C, Turino L, Luna J, Estenoz D (2019) PLGA nano- and micro-particles for the controlled release of florfenicol: experimental and theoretical study. J Appl Polym Sci 136:47248. https://doi.org/10.1002/app.47248

    Article  CAS  Google Scholar 

  42. Puguan JMC, Yu X, Kim H (2014) Characterization of structure, physico-chemical properties and diffusion behavior of Ca-Alginate gel beads prepared by different gelation methods. J Colloid Interface Sci 432:109–116. https://doi.org/10.1016/j.jcis.2014.06.048

    Article  CAS  PubMed  Google Scholar 

  43. Mordi MN, Pelta MD, Boote V, Morris GA, Barber J (2000) Acid-catalyzed degradation of clarithromycin and erythromycin B: A comparative study using NMR spectroscopy. J Med Chem 43:467–474. https://doi.org/10.1021/jm9904811

    Article  CAS  PubMed  Google Scholar 

  44. Öztürk AA, Yenilmez E, Özarda MG (2019) Clarithromycin-loaded poly (lactic-co-glycolic acid)(PLGA) nanoparticles for oral administration: effect of polymer molecular weight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects. Polymers 11:1632. https://doi.org/10.3390/polym11101632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen WF, Pan L, Chen LF, Yu Z, Wang Q, Yan CC (2014) Comparison of EDTA and SDS as potential surface impregnation agents for lead adsorption by activated carbon. Appl Surf Sci 309:38–45. https://doi.org/10.1016/j.apsusc.2014.04.152

    Article  CAS  Google Scholar 

  46. Matsubayashi M, Terukina T, Hattori Y, Otsuka M (2018) Preparation of calcium phosphate coated simvastatin-loaded PLGA microspheres dispersed alginate hydrogel beads as a controlled drug delivery carrier. Key Eng Mater 782:201–206. https://doi.org/10.4028/www.scientific.net/KEM.782.201

    Article  Google Scholar 

  47. Kim DH, Martin DC (2006) Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 27:3031–3037. https://doi.org/10.1016/j.biomaterials.2005.12.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT, PICT 2018-0202) and Universidad Nacional del Litoral (UNL) of Argentina for the financial support granted to this contribution.

Funding

Universidad Nacional del Litoral,Consejo Nacional de Investigaciones Científicas y Técnicas,Agencia Nacional de Promoción Científica y Tecnológica

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Karp.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 76 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karp, F., Mengatto, L.N., Satler, F.S. et al. Antibiotic delivery based on poly(lactic-co-glycolic) acid and natural polymers: a biocomposite strategy. Iran Polym J 32, 299–312 (2023). https://doi.org/10.1007/s13726-022-01124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01124-x

Keywords

Navigation