Skip to main content

Advertisement

Log in

Kinetic study on the liquefaction of bagasse in polyhydric alcohols based on the cell wall component of the liquefied residue

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Natural lignocellulose differs from the synthetic polymer due to the mineral matter which has a great influence on its degradation. To better understand lignocelluloses liquefaction, the bagasse was liquefied in alcoholic solvent [polyethylene glycol (PEG 400)/glycerol] catalyzed by sulfuric acid at 140–180 °C under atmospheric pressure. The amount of major components (cellulose, hemicellulose, lignin and ash) in the liquefied residue was used as a measurement of the extent of liquefaction. The results showed that hemicellulose is the most reactive component to liquefaction among other major cell wall components, followed by the lignin and cellulose. The content of the ash increased slowly with the reaction time under all reaction temperatures due to the re-condensation or re-precipitation of liquefied components. Based on the experimental results, the reaction kinetics for bagasse liquefaction was modeled and the activation energies, frequency factors and reaction orders for cellulose and lignin were calculated in a conventional manner. The activation energies for the liquefaction of lignin, cellulose and bagasse were 30.51 kJ mol−1, 72.83 kJ mol−1, and 67.09 kJ mol−1, respectively. The results of the enthalpy indicated the liquefaction of biomass is a highly endothermic reaction process. A better understanding to the liquefaction kinetics of biomass could be conducted based on the cell wall component of the liquefied residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang C, Guo H-J, Zhang H-R, Xiong L, Li H-L, Chen X-D (2019) A new concept for total components conversion of lignocellulosic biomass: a promising direction for clean and sustainable production in its bio-refinery. J Chem Technol Biotechnol 94:2416–2424

    Article  CAS  Google Scholar 

  2. Fuentes D, Egues I, Labidi J (2019) Liquefaction of Kraft lignin using polyhydric alcohols and organic acids as catalysts for sustainable polyols production. Ind Crop Prod 137:687–693

    Article  Google Scholar 

  3. Zhao Y, Cao H, Yao C, Li R, Wu Y (2020) Synergistic effects on cellulose and lignite co-pyrolysis and co-liquefaction. Bioresour Technol 299:122627

    Article  CAS  Google Scholar 

  4. Hu Y, Gu Z, Li W, Xu C (2020) Alkali-catalyzed liquefaction of pinewood sawdust in ethanol/water co-solvents. Biomass Bioenergy 134:105485

    Article  CAS  Google Scholar 

  5. Cheng S, Wei L, Rabnawaz M (2018) Catalytic liquefaction of pine sawdust and in-situ hydrogenation of biocrude over bifunctional Co-Zn/HZSM-5 catalysts. Fuel 223:252–260

    Article  CAS  Google Scholar 

  6. Haverly MR, Schulz TC, Whitmer LE, Friend AJ, Funkhouser JM, Smith RG, Young MK, Brown RC (2018) Continuous solvent liquefaction of biomass in a hydrocarbon solvent. Fuel 211:291–300

    Article  CAS  Google Scholar 

  7. Zheng Z-Q, Liu Y, Li D, Wang L-J, Adhikari B, Chen XD (2017) Microwave-driven sugar beet pulp liquefaction in polyhydric alcohols. Int J Food Eng 13:20160164

    Article  CAS  Google Scholar 

  8. Zhang H, Pang H, Zhang L, Cheng X, Liao B (2013) Biodegradability of polyurethane foam from liquefied wood based polyols. J Polym Environ 21:329–334

    Article  CAS  Google Scholar 

  9. Gao LL, Liu YH, Lei HW, Peng H, Ruan R (2010) Preparation of semirigid polyurethane foam with liquefied bamboo residues. J Appl Polym Sci 116:1694–1699

    CAS  Google Scholar 

  10. Kurimoto Y, Doi S, Tamura Y (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53:617–622

    Article  CAS  Google Scholar 

  11. Zhang H, Ding F, Luo C, Xiong L, Chen X (2012) Liquefaction and characterization of acid hydrolysis residue of corncob in polyhydric alcohols. Ind Crop Prod 39:47–51

    Article  Google Scholar 

  12. Zhang H, Luo J, Li Y, Guo H, Xiong L, Chen X (2013) Acid-catalyzed liquefaction of bagasse in the presence of polyhydric alcohol. Appl Biochem Biotechnol 170:1780–1791

    Article  CAS  Google Scholar 

  13. Zhang H, Yang H, Guo H, Huang C, Xiong L, Chen X (2014) Kinetic study on the liquefaction of wood and its three cell wall component in polyhydric alcohols. Appl Energy 113:1596–1600

    Article  CAS  Google Scholar 

  14. Shi Y, Xia X, Li J, Wang J, Zhao T, Yang H, Jiang J, Jiang X (2016) Solvolysis kinetics of three components of biomass using polyhydric alcohols as solvents. Bioresour Technol 221:102–110

    Article  CAS  Google Scholar 

  15. Yan YB, Hu MM, Wang ZH (2010) Kinetic study on the liquefaction of cornstalk in polyhydric alcohols. Ind Crop Prod 32:349–352

    Article  CAS  Google Scholar 

  16. Zhang H, Pang H, Ji H, Fu T, Liao B (2012) Investigation of liquefied wood residues based on cellulose, hemicellulose and lignin. J Appl Polym Sci 123:850–856

    Article  CAS  Google Scholar 

  17. Williams PT, Horne PA (1994) The role of metal salts in the pyrolysis of biomass. Renew Energy 4:1–13

    Article  CAS  Google Scholar 

  18. Hassan EM, Shukry N (2008) Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues. Ind Crop Prod 27:33–38

    Article  CAS  Google Scholar 

  19. Kurimoto Y, Takeda M, Doi S, Tamura Y, Ono H (2001) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour Technol 77:33–40

    Article  CAS  Google Scholar 

  20. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Nation Renew Energy Laboratory

  21. Acemioglu B, Alma MH (2002) Kinetics of wood phenolysis in the presence of HCl as catalyst. J Appl Polym Sci 85:1098–1103

    Article  CAS  Google Scholar 

  22. Jasiukaitytė E, Kunaver M, Strlič M (2009) Cellulose liquefaction in acidified ethylene glycol. Cellulose 16:393–405

    Article  Google Scholar 

  23. Pan H, Shupe TF, Hse CY (2007) Characterization of liquefied wood residues from different liquefaction conditions. J Appl Polym Sci 105:3739–3746

    CAS  Google Scholar 

  24. Zhang H, Guo H, Wang B, Shi S, Xiong L, Chen X (2016) Synthesis and characterization of quaternized bacterial cellulose prepared in homogeneous aqueous solution. Carbohydr Polym 136:171–176

    Article  CAS  Google Scholar 

  25. Liu Q, Wang S, Zheng Y, Luo Z, Cen K (2008) Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrol 82:170–177

    Article  CAS  Google Scholar 

  26. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  27. Mishra G, Saka S (2011) Kinetic behavior of liquefaction of Japanese beech in subcritical phenol. Bioresour Technol 102:10946–10950

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Guangdong Basic and Applied Basic Research Foundation (2018A030313150 and 2020A1515010516), the Project of Jiangsu Province Science and Technology (BE2018342) and the Foundation of the key laboratory of renewable Energy, Chinese Academy of Sciences (y807jc1001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinde Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, Q., Peng, F. et al. Kinetic study on the liquefaction of bagasse in polyhydric alcohols based on the cell wall component of the liquefied residue. Iran Polym J 29, 535–541 (2020). https://doi.org/10.1007/s13726-020-00817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00817-5

Keywords

Navigation