Skip to main content
Log in

Poly(lactic acid)/thermoplasticized rice straw biocomposites: effects of benzylated lignocellulosic filler and nanoclay

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The physical, viscoelastic, thermal and mechanical properties of poly(lactic acid) (PLA) as a well-known biodegradable plastics were enhanced by incorporating a chemically modified biomass without sacrificing the biodegradability of the matrix. Rice straw after milling was benzylated with NaOH and benzyl chloride solution at reflux temperature for 6 h. The weight gain percentage of benzylated rice straw (BRS) was 145% and some thermoplasticity was induced in the material. The results showed that the chemical modification successfully reduced the glass transition temperature (Tg) of rice straw to about 170 °C. By adding the benzylated rice straw at an optimal loading, the mechanical properties of PLA, i.e., Young’s modulus, tensile strength as well as toughness, were considerably improved as well as Tg, crystallinity and processability. Higher Tg, intensified non-terminal behaviour, and microscopic observations of the resultant PLA green composites demonstrated the strong interactions between PLA chains and the plasticized lignocellulosic polymers. Despite the positive effect of benzylated rice straw in PLA, compounding of the organically modified nanoclay with the biocomposites did not change the latter properties as expected due to the poor dispersion state of nanoparticles in the matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fakhri LA, Ghanbarzadeh B, Dehghannia J, Entezami AA (2012) The effects of montmorillonite and cellulose nanocrystals on physical properties of carboxymethyl cellulose/polyvinyl alcohol blend films. Sci Technol 24:455–466

    Google Scholar 

  2. Zhang G, Huang K, Jiang X, Huang D, Yang Y (2013) Acetylation of rice straw for thermoplastic applications. Carbohydr Polym 96:218–226

    Article  CAS  PubMed  Google Scholar 

  3. Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021

    Article  CAS  Google Scholar 

  4. Chen J, Su M, Ye J, Yang Z, Cai Z, Yan H, Hong J (2014) All-straw-fiber composites: benzylated straw as matrix and additional straw fiber reinforced composites. Polym Compos 35:419–426

    Article  CAS  Google Scholar 

  5. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny J (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    Article  CAS  Google Scholar 

  6. Song J, Zhang H (2018) Influence of pearlescent pigments on mechanical properties and crystallization behavior of polylactic acid. Iran Polym J 27:105–114

    Article  CAS  Google Scholar 

  7. Qin L, Qiu J, Liu M, Ding S, Shao L, Lü S, Zhang G, Zhao Y, Fu X (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166:772–778

    Article  CAS  Google Scholar 

  8. Debeli DK, Guo J, Li Z, Zhu J, Li N (2017) Treatment of ramie fiber with different techniques: the influence of diammonium phosphate on interfacial adhesion properties of ramie fiber-reinforced polylactic acid composite. Iran Polym J 26:341–354

    Article  CAS  Google Scholar 

  9. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2019) Application of polymethylmethacrylate-grafted cellulose as reinforcement for compatibilised polylactic acid/natural rubber blends. Carbohydr Polym 213:50–58

    Article  CAS  PubMed  Google Scholar 

  10. Wool R, Sun XS (2011) Bio-based polymers and composites. Academic, Cambridge

    Google Scholar 

  11. Oliver-Ortega H, Méndez JA, Mutjé P, Tarrés Q, Espinach FX, Ardanuy M (2017) Evaluation of thermal and thermomechanical behaviour of bio-based polyamide 11 based composites reinforced with lignocellulosic fibres. Polymers 9:522

    Article  CAS  PubMed Central  Google Scholar 

  12. Pereira R, Campana Filho S, Curvelo A, Gandini A (1997) Benzylated pulps from sugar cane bagasse. Cellulose 4:21–31

    Article  CAS  Google Scholar 

  13. Müller K, Zollfrank C, Schmid M (2019) Natural polymers from biomass resources as feedstocks for thermoplastic materials. Macromol Mater Eng 304:1800760

    Article  CAS  Google Scholar 

  14. Hon DNS, Ou NH (1989) Thermoplasticization of wood. I. Benzylation of wood. J Polym Sci Part A Polym Chem 27:2457–2482

    Article  CAS  Google Scholar 

  15. Hon DNS, Luis JMS (1989) Thermoplasticization of wood. II. Cyanoethylation. J Polym Sci Part A Polym Chem 27:4143–4160

    Article  CAS  Google Scholar 

  16. Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC (2002) All-plant fiber composites. I: Unidirectional sisal fiber reinforced benzylated wood. Polym Compos 23:624–633

    Article  CAS  Google Scholar 

  17. Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC (2003) Self-reinforced melt processable composites of sisal. Compos Sci Technol 63:177–186

    Article  CAS  Google Scholar 

  18. Lu X, Zhang MQ, Rong MZ, Da Lei Y, Yang GC (2004) The preparation of self-reinforced sisal fiber composites. Polym Polym Compos 12:297–307

    CAS  Google Scholar 

  19. Morita M, Sakata I (1986) Chemical conversion of wood to thermoplastic material. J Appl Polym Sci 31:831–840

    Article  CAS  Google Scholar 

  20. Mohammadi-Rovshandeh J, Sereshti H (2005) The effect of extraction and prehydrolysis on the thermoplasticity and thermal stability of chemically modified rice straw. Iran Polym J 14:855–862

    CAS  Google Scholar 

  21. Davachi SM, Bakhtiari S, Pouresmaeel-Selakjani P, Mohammadi-Rovshandeh J, Kaffashi B, Davoodi S, Yousefi A (2018) Investigating the effect of treated rice straw in PLLA/starch composite: mechanical, thermal, rheological, and morphological study. Adv Polym Technol 37:5–16

    Article  CAS  Google Scholar 

  22. Mohammadi-Rovshandeh J, Kaffashi B, Davachi SM, Pouresmaeel-Selakjani P, Chaboki MG, Dirini F (2017) Preparation and characterization of benzylated products from rice straw. Cell Chem Technol 51:223–235

    CAS  Google Scholar 

  23. Zandi A, Zanganeh A, Hemmati F, Mohammadi-Roshandeh J (2019) Thermal and biodegradation properties of poly(lactic acid)/rice straw composites: effects of modified pulping products. Iran Polym J 28:403–415

    Article  CAS  Google Scholar 

  24. Jia S, Yu D, Zhu Y, Wang Z, Chen L, Fu L (2017) Morphology, crystallization and thermal behaviors of PLA-based composites: wonderful effects of hybrid GO/PEG via dynamic impregnating. Polymers 9:528

    Article  CAS  PubMed Central  Google Scholar 

  25. Jafari M, Davachi SM, Mohammadi-Rovshandeh J, Pouresmaeel-Selakjani P (2018) Preparation and characterization of bionanocomposites based on benzylated wheat straw and nanoclay. J Polym Environ 26:913–925

    Article  CAS  Google Scholar 

  26. Risyon NP, Othman SH, Basha RK, Talib RA (2016) Effect of halloysite nanoclay concentration and addition of glycerol on mechanical properties of bionanocomposite films. Polym Polym Compos 24:795–802

    CAS  Google Scholar 

  27. Febrianto F, Yoshioka M, Nagai Y, Mihara M, Shiraishi N (2001) Composites of wood and trans-1,4-isoprene rubber. II: processing conditions for production of the composites. Wood Sci Technol 35:297–310

    Article  CAS  Google Scholar 

  28. Sun L, Gibson RF, Godaninejad F, Suhr J (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69:2392–2409

    Article  CAS  Google Scholar 

  29. Kausch HH, Michler GH (2007) Effect of nanoparticle size and size-distribution on mechanical behavior of filled amorphous thermoplastic polymers. J Appl Polym Sci 105:2577–2587

    Article  CAS  Google Scholar 

  30. Fu S, Sun Z, Huang P, Li Y, Hu N (2019) Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci 1:2–30

    Article  Google Scholar 

  31. Suresh G, Jatav S, Geethu PM, Rephung Y, Rao MSR, Satapathy DK (2018) Poly(vinylidene fluoride)–formvar blends: dielectric, miscibility and mechanical studies. J Phys D Appl Phys 51:065604

    Article  CAS  Google Scholar 

  32. Ahmad IA, Kim HK, Deveci S, Kumar RV (2019) Non-isothermal crystallisation kinetics of carbon black-graphene-based multimodal-polyethylene nanocomposites. Nanomaterials 9:392

    Article  PubMed Central  Google Scholar 

  33. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites, 2nd edn. CRC Press, New York

    Google Scholar 

  34. Menard KP, Menard NR (2015) Dynamic mechanical analysis in the analysis of polymers and rubbers. In: Encyclopedia of polymer science and technology. Wiley, Hoboken

  35. Koh HC, Park JS, Jeong MA, Hwang HY, Hong YT, Ha SY, Nam SY (2008) Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes. Desalination 233:201–209

    Article  CAS  Google Scholar 

  36. Hagita K, Morita H (2019) Effects of polymer/filler interactions on glass transition temperatures of filler-filled polymer nanocomposites. Polymer 178:121615

    Article  CAS  Google Scholar 

  37. Dealy JM, Wang J (2013) Introduction to rheology. In: Melt rheology and its applications in the plastics industry, 2nd edn. Springer, Dordrecht

  38. Radhakrishnan S, Kulkarni MB, Samarth N, Mahanwar PA (2016) Melt rheological studies of polypropylene filled with coconut water treated and untreated fly ash. J Appl Polym Sci 133:43900

    Article  CAS  Google Scholar 

  39. Davachi S, Kaffashi B, Roushandeh JM (2012) Synthesis and characterization of a novel terpolymer based on l-lactide, glycolide, and trimethylene carbonate for specific medical applications. Polym Adv Technol 23:565–573

    Article  CAS  Google Scholar 

  40. Nazari T, Garmabi H (2012) Effect of organoclays on the rheological and morphological properties of poly(acrylonitrilebutadiene-styrene)/poly(methyl methacrylate)/clay nanocomposites. Polym Compos 33:1893–1902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to the Iran National Science Foundation for their valuable support and funding of this project (grant number: 92043497).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Mohammadi-Rovshandeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani Chaboki, M., Mohammadi-Rovshandeh, J. & Hemmati, F. Poly(lactic acid)/thermoplasticized rice straw biocomposites: effects of benzylated lignocellulosic filler and nanoclay. Iran Polym J 28, 777–788 (2019). https://doi.org/10.1007/s13726-019-00743-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00743-1

Keywords

Navigation