Skip to main content

Advertisement

Log in

Shape-stable phenolic/polyethylene glycol phase change material: kinetics study and improvements in thermal properties of nanocomposites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Storage, transformation, and absorption of energy play effective roles in application and performance of heat and thermal energy beneficiary. Phase change materials (PCMs) are substances with high heat of fusion which can be utilized to design thermal protective and thermal energy storage systems. However, PCM leakage in phase changing process is a well-known disadvantage of the PCM containing systems. One of the approaches to avoid PCM leakage is to prepare shape-stabilized PCM in polymeric composites. In this study, polyethylene glycol (PEG), as a PCM, was shape-stabilized with low leakage in the novolac colloidal structure with no solvent and through a sol–gel in situ polymerization process. Supercooling is a negative associate phenomenon in these systems, which may occur due to the low rate of nucleation and nucleation growth. Nanoclay was used to avoid supercooling of PEG. PEG supercooling significantly decreased when 2.5 wt% of nanoclay was incorporated. This is due to the role of nanoclay particles as the crystal nuclei. The sol–gel polymerization kinetics of novolac resin in the presence of nanoclay and molten PEG was also studied using the Kamal–Sourour model. Results showed that 85 wt% of PEG was preserved with leakage less than 3.5 wt% by shape stabilization encapsulated with colloidal structure of the phenolic resin. Nanoclay improved the thermal properties of the system and reduced the supercooling about 20%. Moreover, based on Kamal–Sourour model, polymerization kinetics could suggest a lower novolac curing rate in the presence of molten PEG and nanoclay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. He F, Wang X, Wu D (2014) New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor. Energy 67:223–233

    Article  CAS  Google Scholar 

  2. Tahan Latibari S, Mehrali M, Mehrali M, Indra Mahlia T, Cornelis Metselaar H (2013) Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy 61:664–672

    Article  CAS  Google Scholar 

  3. Ng DQ, Tseng YL, Shih YF, Lian HY, Yu YH (2017) Synthesis of novel phase change material microcapsule and its application. Polymer 20:250–262

    Article  CAS  Google Scholar 

  4. Irani F, Ranjbar Z, Moradian S, Jannesari A (2017) Microencapsulation of n-heptadecane phase change material with starch shell. Prog Org Coat 113:31–38

    Article  CAS  Google Scholar 

  5. Sari A, Alkan C, Döğüşcü DK, Biçer A (2014) Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol Energy Mater Sol Cells 126:42–50

    Article  CAS  Google Scholar 

  6. Tumirah K, Hussein MZ, Zulkarnain Z, Rafeadah R (2014) Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy 66:881–890

    Article  CAS  Google Scholar 

  7. Kwon HJ, Cheong IW, Kim JH (2010) Preparation of n-octadecane nanocapsules by using interfacial redox initiation in miniemulsion polymerization. Macromol Res 18:923–926

    Article  CAS  Google Scholar 

  8. Bagheri L, Ansari L, Abnous K, Taghdisi SM, Charbgoo F, Ramezani M, Alibolandi M (2018) Silica based hybrid materials for drug delivery and bioimaging. J Control Rel 277:57–76

    Article  CAS  Google Scholar 

  9. Salunkhe PB, Shembekar PS (2012) A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev 16:5603–5616

    Article  CAS  Google Scholar 

  10. Zhang Y, Wang X, Wu D (2015) Design and fabrication of dual-functional microcapsules containing phase change material core and zirconium oxide shell with fluorescent characteristics. Sol Energy Mater Sol Cells 133:56–68

    Article  CAS  Google Scholar 

  11. Qian T, Li J, Ma H, Yang J (2015) The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/SiO2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol–gel method. Sol Energy Mater Sol Cells 132:29–39

    Article  CAS  Google Scholar 

  12. Tang B, Wu C, Qiu M, Zhang X, Zhang S (2014) PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity. Mater Chem Phys 144:162–167

    Article  CAS  Google Scholar 

  13. Yang H, Feng L, Wang C, Zhao W, Li X (2012) Confinement effect of SiO2 framework on phase change of PEG in shape-stabilized PEG/SiO2 composites. Eur Polym J 48:803–810

    Article  CAS  Google Scholar 

  14. Yelkovan S, Yılmaz D, Aksoy K (2014) A study of organo-modified clay type on pet-clay based nanocomposite properties. Mater Sci 1:33–46

    Google Scholar 

  15. Jeong SG, Chang SJ, We S, Kim S (2015) Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells 139:65–70

    Article  CAS  Google Scholar 

  16. Sari A (2014) Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage. Energy Build 69:184–192

    Article  Google Scholar 

  17. Tang B, Cui J, Wang Y, Jia C, Zhang S (2013) Facile synthesis and performances of PEG/SiO2 composite form-stable phase change materials. Sol Energy 97:484–492

    Article  CAS  Google Scholar 

  18. Tang B, Qiu M, Zhang S (2012) Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Sol Energy Mater Sol Cells 105:242–248

    Article  CAS  Google Scholar 

  19. Chai L, Wang X, Wu D (2015) Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. Appl Energy 138:661–674

    Article  CAS  Google Scholar 

  20. Jiang F, Wang X, Wu D (2014) Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials. Appl Energy 134:456–468

    Article  CAS  Google Scholar 

  21. He F, Wang H, Wu D (2015) Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor. Renew Energy 74:689–698

    Article  CAS  Google Scholar 

  22. Li F, Wang X, Wu D (2015) Fabrication of multifunctional microcapsules containing n-eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis. Energy Convers Manag 106:873–885

    Article  CAS  Google Scholar 

  23. Nasiri M, Bahramian AR (2016) A novel shape stabilized PEG via sol-gel polymerization of novolac resin. Iran Polym J 25:823–829

    Article  Google Scholar 

  24. Naseri I, Kazemi A, Bahramian AR, Kashani MR (2014) Preparation of organic and carbon xerogels using high temperature-pressure sol–gel polymerization. Mater Des 61:35–40

    Article  CAS  Google Scholar 

  25. Shameli K, Bin Ahmad M, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y (2012) Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci 13:6639–6650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alavi Nikje M, Gholi Nataj M (2014) Cloisite 15 Å nanoclay as an effective PTC for the epoxidation of hydroxyl terminated polybutadiene (HTPB). Polimeros 24:536–540

    Google Scholar 

  27. Djomgoue P, Njopwouo D (2013) FT-IR spectroscopy applied for surface clays characterization. J Surf Eng Mater Adv Technol 3:275–282

    Google Scholar 

  28. Madejova J (2003) FTIR techniques in clay minerals studies: a review. Vib Spectrosc 31:1–10

    Article  CAS  Google Scholar 

  29. Hatami L, Haddadi Asl V, Ahmadian Alam L, Roghani Mamaghani H, Salami Kalajahi M (2013) A Study of montmorillonite effect on atom transfer radical polymerization kinetics in a miniemulsion medium. Petrol Res 74:20–34

    Google Scholar 

  30. Kornmann X, Lindberg H, Berglund LA (2001) Synthesis of epoxy-clay nanocomposites. Influence of the nature of the curing agent on structure. Polymer 42:4493–4499

    Article  CAS  Google Scholar 

  31. Krupa I, Sobolčiak P, Abdelrazeq H, Ouederni M, Al-Maadeed M (2017) Natural aging of shape stabilized phase change materials based on paraffin wax. Polym Test 63:567–572

    Article  CAS  Google Scholar 

  32. Tcherbi-Narteh A, Hosur MV, Triggs E, Jelaani S (2013) Effects of surface treatments of montmorillonite nanoclay on cure behavior of diglycidyl ether of bisphenol A epoxy resin. J Nanosci 2013:1155–1167

    Article  CAS  Google Scholar 

  33. Perez JM, Oliet M, Alonso MV, Rodriguez F (2009) Cure kinetics of lignin-novolac resins studied by isoconversional methods. Thermochim Acta 487:39–42

    Article  CAS  Google Scholar 

  34. Halley PJ, Mackay ME (1996) Chemorheology of thermosets-an overview. Polym Eng Sci 36:593–609

    Article  CAS  Google Scholar 

  35. Zhao SF, Zhang GP, Sun R, Wong CP (2014) Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems. Polym Lett 8:95–106

    Article  CAS  Google Scholar 

  36. Bahramian AR, Ahmadi LS, Kokabi M (2014) Performance evaluation of polymer/clay nanocomposite thermal protection systems based on polyethylene glycol phase change material. Iran Polym J 23:163–169

    Article  CAS  Google Scholar 

  37. Hajizadeh A, Bahramian AR, Seifi A, Naseri I (2015) Effect of initial sol concentration on the microstructure and morphology of carbon aerogels. J Sol Gel Sci Technol 73:220–226

    Article  CAS  Google Scholar 

  38. Wilhelm E, Richter C, Rapp BE (2018) Phase change materials in microactuators: basics, applications and perspectives. Sens Actuat A 271:303–347

    Article  CAS  Google Scholar 

  39. He L, Li J, Zhou C, Zhu H, Cao X, Tang B (2014) Phase change characteristics of shape-stabilized PEG/SiO2 composites using calcium chloride-assisted and temperature-assisted sol gel methods. Sol Energy 103:448–455

    Article  CAS  Google Scholar 

  40. Li J, He L, Liu T, Cao X, Zhu H (2013) Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 118:48–53

    Article  CAS  Google Scholar 

  41. Mitran RA, Berger D, Matei C (2018) Improving thermal properties of shape-stabilized phase change materials containing lauric acid and mesocellular foam silica by assessing thermodynamic properties of the non-melting layer. Thermochim Acta 660:70–76

    Article  CAS  Google Scholar 

  42. Pandey AK, Hossain MS, Tyagi VV, Abd Rahim N, Selvaraj JAL, Sari A (2018) Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renew Sustain Energy Rev 82:281–323

    Article  Google Scholar 

  43. Liu H, Wang X, Wu D (2018) Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage. Appl Therm Eng 134:603–614

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tarbiat Modares University and Iran Nanotechnology Initiative Council (INIC) for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Bahramian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samani, F., Bahramian, A.R. & Sharif, A. Shape-stable phenolic/polyethylene glycol phase change material: kinetics study and improvements in thermal properties of nanocomposites. Iran Polym J 27, 495–505 (2018). https://doi.org/10.1007/s13726-018-0626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0626-5

Keywords

Navigation