Skip to main content
Log in

The cyclization index and toughness of gel spun polyacrylonitrile (PAN) proportionality with its heat of stabilization

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The spun tapes of synthesized PAN, its copolymer with 1 wt% itaconic acid, and doped version with 1 wt% sodium dodecyl sulfate (SDS) all showed stripy, even, and compact cross-sections as the hallmark of gel forming products. PAN doping with SDS and acrylonitrile copolymerization with itaconic acid reduced its dimethylformamide (DMF) solution structural viscosity index (Δη) by 50% and 30%, respectively, at 675 s− 1. In addition, the modification of synthesized PAN through doping and acrylonitrile copolymerization with itaconic acid led to severe and mild gelation temperature decrease, respectively. The stabilization peak of the synthesized PAN tape was enhanced as much as 25 °C by 900% hot drawing, decreased by about 10 °C through copolymerization, while experienced small temperature changes through doping. The second derivative of Fourier transform infrared and Gaussian fitting was used to analyze the tapes cyclization due to stabilization treatment through introducing Isd index. 10 min Isd index was raised as much as 430% and 800% in comparison with the synthesized PAN through its doping or acrylonitrile copolymerization with itaconic acid, respectively. Further 180 min of Isd index, however, showed the same proportional increase as toughness of the drawn tapes versus their heat of stabilization through their physical and chemical modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jiang E, Amiralian N, Maghe M, Laycock B, McFarland E, Fox B, Martin DJ, Annamalai PK (2017) Cellulose nanofibers as rheology modifiers and enhancers of carbonization efficiency in polyacrylonitrile. ACS Sustain Chem Eng 5:3296–3304

    Article  CAS  Google Scholar 

  2. Tajaddod N, Li H, Minus ML (2018) Low-temperature graphitic formation promoted by confined interphase structures in polyacrylonitrile/carbon nanotube materials. Polymer 137:346–357

    Article  CAS  Google Scholar 

  3. Karbownik I, Fiedot M, Rac O, Suchorska-Woźniak P, Rybicki T, Teterycz H (2015) Effect of doping polyacrylonitrile fibers on their structural and mechanical properties. Polymer 75:97–108

    Article  CAS  Google Scholar 

  4. Miller G, Yu J, Joseph R, Choudhury S, Mecham S, Baird D, Bortner M, Norris R, Paulauskas F, Riffle J (2017) Melt-spinnable polyacrylonitrile copolymer precursors for carbon fibers. Polymer 126:87–95

    Article  CAS  Google Scholar 

  5. Liu HC, Tuan C-C, Davijani AAB, Wang P-H, Chang H, Wong C-P, Kumar S (2017) Rheological behavior of polyacrylonitrile and polyacrylonitrile/lignin blends. Polymer 111:177–182

    Article  CAS  Google Scholar 

  6. Ouyang Q, Cheng L, Wang H, Li K (2008) Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab 93:1415–1421

    Article  CAS  Google Scholar 

  7. Nguyen-Thai NU, Hong SC (2013) Structural evolution of poly(acrylonitrile-co-itaconic acid) during thermal oxidative stabilization for carbon materials. Macromolecules 46:5882–5889

    Article  CAS  Google Scholar 

  8. Rwei S-P, Way T-F, Hsu Y-S (2013) Kinetics of cyclization reaction in poly(acrylonitrile/methyl acrylate/dimethyl itaconate) copolymer determined by a thermal analysis. Polym Degrad Stab 98:2072–2080

    Article  CAS  Google Scholar 

  9. Liu X, Chen W, Hong Y-L, Yuan S, Kuroki S, Miyoshi T (2015) Stabilization of atactic-polyacrylonitrile under nitrogen and air as studied by solid-state NMR. Macromolecules 48:5300–5309

    Article  CAS  Google Scholar 

  10. Hameed N, Sharp J, Nunna S, Creighton C, Magniez K, Jyotishkumar P, Salim NV, Fox B (2016) Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization. Polym Degrad Stab 128:39–45

    Article  CAS  Google Scholar 

  11. Ju A, Guang S, Xu H (2013) Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers. Carbon 54:323–335

    Article  CAS  Google Scholar 

  12. Aykut Y, Pourdeyhimi B, Khan SA (2013) Effects of surfactants on the microstructures of electrospun polyacrylonitrile nanofibers and their carbonized analogs. J Appl Polym Sci 130:3726–3735

    Article  CAS  Google Scholar 

  13. Park JH, Kim MH, Jeong L, Cho D, Kwon OH, Park WH (2014) Effect of surfactants on sol–gel transition of silk fibroin. J Sol-Gel Sci Technol 71:364–371

    Article  CAS  Google Scholar 

  14. Wang Q, Li L, Liu E, Xu Y, Liu J (2006) Effects of SDS on the sol–gel transition of methylcellulose in water. Polymer 47:1372–1378

    Article  CAS  Google Scholar 

  15. Shibukawa T, Sone M, Uchida A, Iwahori K (1968) Light-scattering study of polyacrylonitrile solution. J Polym Sci A 6:147–159

    Article  CAS  Google Scholar 

  16. Eom Y, Kim BC (2017) The effect of dimethylsulfoxide on the dissociation process of physical complexes of polyacrylonitrile in N,N-dimethylformamide. Polym Int 66:1099–1106

    Article  CAS  Google Scholar 

  17. Hong P-D, Chou C-M, He C-H (2001) Solvent effects on aggregation behavior of polyvinyl alcohol solutions. Polymer 42:6105–6112

    Article  CAS  Google Scholar 

  18. Duan X, Xu J, He B, Li J, Sun Y (2011) Preparation and rheological properties of cellulose/chitosan homogeneous solution in ionic liquid. BioResources 6:4640–4651

    CAS  Google Scholar 

  19. Zhang S, Li F-X, Yu J-Y (2011) Rheological properties of cellulose-NaOH complex solutions: from dilute to concentrated states. Cell Chem Technol 45:313–320

    CAS  Google Scholar 

  20. Fredrickson GH (1993) Surfactant-induced lyotropic behavior of flexible polymer solutions. Macromolecules 26:2825–2831

    Article  CAS  Google Scholar 

  21. Tan L, Pan D, Pan N (2009) Rheological study on thermal-induced gelation behavior of polyacrylonitrile solution. J Polym Res 16:341–350

    Article  CAS  Google Scholar 

  22. Tan L, Pan D, Pan N (2008) Gelation behavior of polyacrylonitrile solution in relation to aging process and gel concentration. Polymer 49:5676–5682

    Article  CAS  Google Scholar 

  23. Beckmann J, Zenke D (1993) Thermoreversible gelation of polyacrylonitrile/dimethylformamide-solution. Colloid Polym Sci 271:436–445

    Article  CAS  Google Scholar 

  24. Tan L, Liu S, Pan D (2008) Viscoelastic behavior of polyacrylonitrile/dimethyl sulfoxide concentrated solution during thermal-induced gelation. J Phys Chem B 113:603–609

    Article  CAS  Google Scholar 

  25. Bercea M, Morariu S, Brunchi C-E (2009) Rheological investigation of thermal-induced gelation of polyacrylonitrile solutions. ‎Int J Thermophys 30:1411–1422

    Article  CAS  Google Scholar 

  26. Tanaka F, Nishinari K (1996) Junction multiplicity in thermoreversible gelation. Macromolecules 29:3625–3628

    Article  CAS  Google Scholar 

  27. Tanaka F (2000) Thermoreversible gelation strongly coupled to polymer conformational transition. Macromolecules 33:4249–4263

    Article  CAS  Google Scholar 

  28. Tanaka F (1998) Polymer – surfactant interaction in thermoreversible gels. Macromolecules 31:384–393

    Article  CAS  Google Scholar 

  29. Furuya T, Koga T, Tanaka F (2004) Effects of added surfactants on thermoreversible gelation of associating polymer solutions. ‎J Polym Sci B 42:733–751

    Article  CAS  Google Scholar 

  30. Arbab S, Noorpanah P, Mohammadi N, Zeinolebadi A (2011) Simultaneous effects of polymer concentration, jet-stretching, and hot-drawing on microstructural development of wet-spun poly(acrylonitrile) fibers. Polym Bull 66:1267–1280

    Article  CAS  Google Scholar 

  31. Dong R, Zhao J, Zhang Y, Pan D (2009) Morphology control of polyacrylonitrile (PAN) fibers by phase separation technique. J Polym Sci B 47:261–275

    Article  CAS  Google Scholar 

  32. Liu S, Tan L, Pan D, Chen Y (2011) Gel spinning of polyacrylonitrile fibers with medium molecular weight. Polym Int 60:453–457

    Article  CAS  Google Scholar 

  33. Li J, Shao L, Zhou X, Wang Y (2014) Fabrication of high strength PVA/rGO composite fibers by gel spinning. RSC Adv 4:43612–43618

    Article  CAS  Google Scholar 

  34. Liu J, Lian F, Ma Z-K, Liang J-Y (2012) Effects of deformation-induced orientation on cyclization and oxidation of polyacrylonitrile fibers during stabilization process. Chin J Polym Sci 30:786–795

    Article  CAS  Google Scholar 

  35. Chen J, Harrison I (2002) Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 40:25–45

    Article  CAS  Google Scholar 

  36. Schultz JM (2012) Self-generated fields and polymer crystallization. Macromolecules 45:6299–6323

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M., Mohammadi, N. The cyclization index and toughness of gel spun polyacrylonitrile (PAN) proportionality with its heat of stabilization. Iran Polym J 27, 395–404 (2018). https://doi.org/10.1007/s13726-018-0617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0617-6

Keywords

Navigation