Skip to main content

Advertisement

Log in

Eugenol-based non-isocyanate polyurethane and polythiourethane

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Global resource crisis and severe environmental problems have compelled world scientists to develop sustainable and green chemical materials. In this work, eugenol, a cheap and renewable phenol derivative found in cloves, is successfully utilized to prepare hydroxyl non-isocyanate polyurethanes (HNIPU), with number-average molecular weights (M n) from several to dozens of kilodaltons. First, a diepoxide intermediate is synthesized through three steps in 43.9% total yield. Second, this diepoxide reacts with CO2 at atmospheric pressure to form an intermediate possessing two cyclic carbonate groups in moderate yield. Third, the cyclic carbonate-containing intermediate further reacts, with compounds such as 4,4′-diaminodiphenyl methane, 1,6-hexanediamine and p-xylene diamine by nucleophilic ring-opening to obtain the desired HNIPUs. Furthermore, the diepoxide intermediate and CS2 undergo addition reaction to form cyclic dithiocarbonate intermediate that further reacts with 4,4′-diaminodiphenyl methane to afford polythiourethane (PTU). The resulting PTU contains mercapto groups in its each unit. Number-average molecular weight of PTU is Mn 2800 Da. Finally, crosslinking reactions occur between the mercapto groups of PTU and crosslinkers (1,6-hexanediol acrylate and/or cardanol) by thiol-ene reactions under UV (λ = 365 nm) irradiation conditions, leading to their corresponding crosslinked polymers. The optimized conditions for preparing crosslinked polymers include: PTU/cardanol/1,6-hexanediol acrylate = 1:1:0.05 (mass ratio), and UV irradiation time for 30 min. This work is expected to expand applications of eugenol and to provide a new route to NIPUs and PTUs using various diamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Engels HW, Pirkl HG, Albers R, Albach RW, Krause J, Hoffmann A, Casselmann H, Dormish J (2013) Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew Chem Int Ed 52:9422–9441

    Article  CAS  Google Scholar 

  2. Zhou S, Lu HD, Song L, Wang ZZ, Hu Y, Ni JX, Xing WY (2008) Microencapsulated ammonium polyphosphate with polyurethane shell: application to flame retarded polypropylene/ethylene-propylene diene terpolymer blends. J Macromol Sci A 46:136–144

    Article  Google Scholar 

  3. Kamaci M, Kaya I (2014) Photophysical, electrochemical, thermal and morphological properties of polyurethanes containing azomethine bonding. J Macromol Sci A 51:805–819

    Article  CAS  Google Scholar 

  4. Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Mouloungui Z (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46:3771–3792

    Article  CAS  Google Scholar 

  5. Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H (2015) Isocyanate-free routes to polyurethanes and poly(hydroxyl urethane)s. Chem Rev 115:12407–12439

    Article  CAS  Google Scholar 

  6. Delebecq E, Pascault JP, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118

    Article  CAS  Google Scholar 

  7. Guan J, Song YH, Lin Y, Yin XZ, Zuo M, Zhao YH, Tao XL, Zheng Q (2011) Progress in study of non-isocyanate polyurethane. Ind Eng Chem Res 50:6517–6527

    Article  CAS  Google Scholar 

  8. Ochiai B, Utsuno T (2013) Non-isocyanate synthesis and application of telechelic polyurethanes via polycondensation of diurethanes obtained from ethylene carbonate and diamines. J Polym Sci A 51:525–533

    Article  CAS  Google Scholar 

  9. More AS, Gadenne B, Alfos C, Cramail H (2012) AB type polyaddition route to thermoplastic polyurethanes from fatty acid derivatives. Polym Chem 3:1594–1605

    Article  CAS  Google Scholar 

  10. Duval C, Kébir N, Charvet A, Martin A, Burel F (2015) Synthesis and properties of renewable nonisocyanate polyurethanes (NIPUs) from dimethylcarbonate. J Polym Sci A 53:1351–1359

    Article  CAS  Google Scholar 

  11. Deepa P, Jayakannan M (2008) Solvent-free and nonisocyanate melt transurethane reaction for aliphatic polyurethanes and mechanistic aspects. J Polym Sci A 46:2445–2458

    Article  CAS  Google Scholar 

  12. Leitsch EK, Beniah G, Liu K, Lan T, Heath WH, Scheidt KA, Torkelson JM (2016) Nonisocyanate thermoplastic polyhydroxyurethane elastomers via cyclic carbonate aminolysis: critical role of hydroxyl groups in controlling nanophase separation. ACS Macro Lett 5:424–429

    Article  CAS  Google Scholar 

  13. Inoue Y, Matsumoto K, Endo T (2015) Synthesis and properties of poly(thiourethane)s having soft oligoether segments. J Polym Sci A 53:1076–1081

    Article  CAS  Google Scholar 

  14. Ma XX, Xie H, Shi WF (2013) A highly branched polythiourethane acrylate used for UV-curable high antireflection coatings. Prog Org Coat 76:870–875

    Article  CAS  Google Scholar 

  15. Moriguchi T, Endo T (1995) Polyaddition of bifunctional dithiocarbonates derived from epoxides and carbon disulfide: synthesis of novel poly(thiourethanes). Macromolecules 28:5386–5387

    Article  CAS  Google Scholar 

  16. Li Q, Zhou H, Wicks DA, Hoyle CE (2007) Thiourethane-based thiol-ene high Tg networks: preparation, thermal, mechanical, and physical properties. J Polym Sci A 45:5103–5111

    Article  CAS  Google Scholar 

  17. Kultys A, Rogulska M, Pikus S (2008) The synthesis and characterization of new thermoplastic poly(thiourethane-urethane)s. J Polym Sci A 46:1770–1782

    Article  CAS  Google Scholar 

  18. Tyagi M, Suri G, Chhlabra P, Seshadri G, Malik A, Aggarwal S, Khandal RK (2013) Novel way of making high refractive index plastics; metal containing polymers for optical applications. e-Polymers 9:1197–1214

    Google Scholar 

  19. Ranganathan T, Ramesh C, Kumar A (2004) Synthesis of new thermotropic liquid crystalline polyurethanes containing biphenyl mesogens using a novel AB-type self-polycondensation. Chem Commun 2:154–155

    Article  Google Scholar 

  20. Palaskar DV, Boyer A, Cloutet E, Alfos C, Cramail H (2010) Synthesis of bio-based polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach. Biomacromol 11:1202–1211

    Article  CAS  Google Scholar 

  21. Cheng CJ, Zhang X, Huang QH, Dou XQ, Li J, Cao XX, Tu YM (2015) Preparation of fully bio-based UV-cured non-isocyanate polyurethanes from ricinoleic acid. J Macromol Sci A 52:485–491

    Article  CAS  Google Scholar 

  22. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215

    Article  CAS  Google Scholar 

  23. Yao KJ, Tang CB (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712

    Article  CAS  Google Scholar 

  24. Wilbon PA, Chu FX, Tang CB (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37

    Article  CAS  Google Scholar 

  25. Stemmelen M, Pessel F, Lapinte V, Caillol S, Habas JP, Robin JJ (2011) A fully biobased epoxy resin from vegetable oils: from the synthesis of the precursors by thiol-ene reaction to the study of the final material. J Polym Sci A 49:2434–2444

    Article  CAS  Google Scholar 

  26. Cheng CJ, Bai XX, Liu SJ, Huang QH, Tu YM, Wu HM, Wang XJ (2013) UV cured polymer based on a renewable cardanol derived RAFT agent. J Polym Res 20(7):197

    Article  Google Scholar 

  27. Wang R, Luo YN, Cheng CJ, Huang QH, Huang HS, Qin SL, Tu YM (2016) Syntheses of cardanol-based cationic surfactants and their use in emulsion polymerization. Chem Papers 70:1218–1227

    CAS  Google Scholar 

  28. Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112:2082–2099

    Article  CAS  Google Scholar 

  29. Kamatou GP, Vermaak I, Viljoen AM (2012) Eugenol-from the remote maluku islands to the international market place: a review of a remarkable and versatile molecule. Molecules 17:6953–6981

    Article  CAS  Google Scholar 

  30. Hu KL, Zhao DP, Wu GL, Ma JB (2015) Synthesis and properties of polyesters derived from renewable eugenol and α, ω-diols via a continuous overheating method. Polym Chem 6:7138–7148

    Article  CAS  Google Scholar 

  31. Dai JY, Jiang YH, Liu XQ, Wang JG, Zhu J (2016) Synthesis of eugenol-based multifunctional monomers via a thiol–ene reaction and preparation of UV curable resins together with soybean oil derivatives. RSC Adv 6:17857–17866

    Article  CAS  Google Scholar 

  32. Qin JL, Liu HZ, Zhang P, Wolcott M, Zhang JW (2014) Use of eugenol and rosin as feedstocks for biobased epoxy resins and study of curing and performance properties. Polym Int 63:760–765

    Article  CAS  Google Scholar 

  33. Rahim EA, Sanda F, Masuda T (2006) Synthesis and properties of optically active amino acid based polyacetylenes bearing eugenol and fluorine moieties. J Polym Sci A 44:810–819

    Article  Google Scholar 

  34. Deng JP, Yang B, Chen C, Liang JY (2015) Renewable eugenol-based polymeric oil-absorbent microspheres: preparation and oil absorption ability. ACS Sustainable Chem Eng 3:599–605

    Article  CAS  Google Scholar 

  35. Cheng CJ, Zhang X, Chen XH, Li J, Huang QH, Hu ZY, Tu YM (2016) Self-healing polymers based on eugenol via combination of thiol–ene and thiol oxidation reactions. J Polym Res 23(6):110

    Article  Google Scholar 

  36. Huang YC, Liang LY, Ren X, Tan BE (2011) Nonisocyanate polyurethanes and their applications. Prog Chem 23:1181–1188 (in Chinese)

    CAS  Google Scholar 

  37. Rokicki G, Parzuchowski PG, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26:707–761

    Article  CAS  Google Scholar 

  38. Guo LP, Wang CM, Luo XY, Cui GK, Li HR (2010) Probing catalytic activity of halide salts by electrical conductivity in the coupling reaction of CO2 and propylene oxide. Chem Commun 46:5960–5962

    Article  CAS  Google Scholar 

  39. Sun J, Wang JQ, Cheng WG, Zhang JX, Li XH, Zhang SJ, She YB (2012) Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem 14:654–660

    Article  CAS  Google Scholar 

  40. Whiteoak CJ, Kielland N, Laserna V, Escudero-Adán EC, Martin E, Kleij AW (2013) A powerful aluminum catalyst for the synthesis of highly functional organic carbonates. J Am Chem Soc 135:1228–1231

    Article  CAS  Google Scholar 

  41. Aoyagi N, Furusho Y, Endo T (2013) Convenient synthesis of cyclic carbonates from CO2 and epoxides by simple secondary and primary ammonium iodides as metal-free catalysts under mild conditions and its application to synthesis of polymer bearing cyclic carbonate moiety. J Polym Sci A 51:1230–1242

    Article  CAS  Google Scholar 

  42. Sheng XF, Ren GJ, Qin YS, Chen XS, Wang XH, Wang FS (2015) Quantitative synthesis of bis(cyclic carbonate)s by iron catalyst for non-isocyanate polyurethane synthesis. Green Chem 17:373–379

    Article  CAS  Google Scholar 

  43. Zhou X, Zhang Y, Yang XG, Yao J, Wang GY (2010) Hydrated alkali metal halides as efficient catalysts for the synthesis of cyclic carbonates from CO2 and epoxides. Chin J Catal 31:765–768

    Article  CAS  Google Scholar 

  44. Lee SK, Yoon SH, Chung I, Hartwig A, Kim BK (2011) Waterborne polyurethane nanocomposites having shape memory effects. J Polym Sci A 49:634–641

    Article  CAS  Google Scholar 

  45. Cheng CJ, Zhang X, Bai XX, Li J, Cao XX, Wang JL (2015) Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin. Chem Papers 69:1608–1616

    Article  CAS  Google Scholar 

  46. Wu GL, Liu GP, Zang YL, Lu YB, Xiong YQ, Xu WJ (2010) Preparation and characteration of UV-cured EA/MMT nanocomposites via in situ polymerization. J Macromol Sci A 47:647–654

    Article  CAS  Google Scholar 

  47. Hoyle CE, Loweb AB, Bowman CN (2010) Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev 39:1355–1387

    Article  CAS  Google Scholar 

  48. Roth PJ, Boyer C, Lowe AB, Davis TP (2011) RAFT polymerization and thiol chemistry: a complementary pairing for implementing modern macromolecular design. Macromol Rapid Commun 32:1123–1143

    Article  CAS  Google Scholar 

  49. Yu L, Wang LH, Hu ZT, You YZ, Wu DC, Hong CY (2015) Sequential Michael addition thiol-ene and radicalmediated thiol–ene reactions in one-pot produced sequence-ordered polymers. Polym Chem 6:1527–1532

    Article  CAS  Google Scholar 

  50. Eksik O, Maiorana A, Spinella S, Krishnamurthy A, Weiss S, Gross RA, Koratkar N (2016) Nanocomposites of a cashew nut shell derived epoxy resin and graphene platelets: from flexible to tough. ACS Sustain Chem Eng 4:1715–1721

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Natural Science Foundations of China (NO. 21,564,004 and 21,264,008) and the Natural Science Foundations of Jiangxi Province (No. 2009GZH0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjie Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Li, Y., Zhang, X. et al. Eugenol-based non-isocyanate polyurethane and polythiourethane. Iran Polym J 26, 821–831 (2017). https://doi.org/10.1007/s13726-017-0567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0567-4

Keywords

Navigation