Skip to main content
Log in

Synthesis and characterization of Ag nanoparticles embedded in PVA via UV-photoreduction technique for synthesis of Prussian blue pigment

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Silver nanoparticles doped in polyvinyl alcohol (AgNps/PVA) were synthesized via polymer-promoted reductive reaction of AgNO3 and PVA under time-dependent exposure to UV radiation. The AgNps/PVA composites were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction, UV–Vis spectroscopy, and transmission electron microscopy to describe the structure, nuclearity, and distribution of Ag Nps within the PVA matrix. The UV–Vis spectrum of AgNps/PVA exhibited a broad surface plasmon absorption around 425–443 nm which originated from the formation of Ag NPs. Surface analysis by XPS indicated that the Ag NPs were grown solely on the PVA surface at UV exposure time of 2 h (2.0AgNPs/PVA). Increasing the UV exposure time to 4 h will cause the transformation of metallic nanosilver to oxidized nanosilver. UV–Vis absorption spectra were in situ recorded to follow the synthesis of Prussian blue (PB) on 2.0AgNPs/PVA (PB@2.0AgNPs/PVA). The colloidal dispersion of 2.0AgNPs/PVA in an acidic medium containing free Fe(III) ions and potassium hexacyanoferrate(III) revealed an additional band centered at 720 nm due to the intermetal charge-transfer absorbance of the polymeric Fe(II)-C-N-Fe(III) of the PB@2.0AgNPs/PVA nanocomposite. Control experiments were shown to involve a spontaneous electron transfer reaction between 2.0AgNPs/PVA and Fe(III) ions, with a concomitant decomposition of hexacyanoferrate(III) and formation of PB was observed. Moreover, IR gave clear cut evidence for the synthesis of PB@2.0AgNPs/PVA from the appearance of a band for the cyano group at 2090 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Rao GV, Shashikala HD (2014) Optical, dielectric and mechanical properties of silver nanoparticle embedded calcium phosphate glass. J Non-Cryst Solids 402:204–209

    Article  CAS  Google Scholar 

  2. Koduru HK, Marino L, Janardhanam V, Scaramuzza N (2016) Influence of thin layer of silver nanoparticles on optical and dielectric properties of poly(vinyl alcohol) composite films. Surf Interface 5:47–54

    Article  Google Scholar 

  3. Yuan D, Zhang H (2014) Nanosized palladium supported on diethylenetriamine modified superparamagnetic polymer composite microspheres: synthesis, characterization and application as catalysts for the Suzuki reactions. Appl Catal A 475:249–255

    Article  CAS  Google Scholar 

  4. Sun J, Ma D, Zhang H, Liu X, Han X, Bao X, Weinberg G, Pfänder N, Su D (2006) Toward monodispersed silver nanoparticles with unusual thermal stability. J Am Chem Soc 128:15756–15764

    Article  CAS  Google Scholar 

  5. Kundu S, Mandal M, Ghosh SK, Pal T (2004) Photochemical deposition of SERS active silver nanoparticles on silica gel and their application as catalysts for the reduction of aromatic nitro compounds. Colloid Interface Sci 272:13–144

    Article  Google Scholar 

  6. Guo W, Zeng Z, Zhang X, Peng P, Tang S (2015) Low-temperature sintering bonding using silver nanoparticle paste for electronics packaging. J Nanometer 2015:10

    Google Scholar 

  7. Wang K, Zhong J, Li G, Chen JF (2016) Preparation of silver nanopowders by a controlled wet-chemical synthesis. Mater Lett 173:39–42

    Article  CAS  Google Scholar 

  8. Zhai AX, Cai XH, Jiang XY, Fan GZ (2012) A novel and facile wet-chemical method for synthesis of silver microwires. Trans Nonferrous Met Soc China 22:943–948

    Article  CAS  Google Scholar 

  9. Xu C, Wang Y, Chen H, Nie D, Liu Y (2014) Hydrothermal synthesis of silver crystals via a sodium chloride assisted route. Mater Lett 136:175–178

    Article  CAS  Google Scholar 

  10. Ali IO (2013) Synthesis and characterization of Ag 0/PVA nanoparticles via photo- and chemical reduction methods for antibacterial study. Colloids Surf A 436:922–929

    Article  CAS  Google Scholar 

  11. Courrol LC, Flávia ROS, Laércio GA (2007) Simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf A 305:54–57

    Article  CAS  Google Scholar 

  12. Dalchiele EA, Marotti RE, Cortes A, Riveros G, Gómez H, Martínez L, Romero R, Leinen D, Martin F, Ramos-Barrado JR (2007) Silver nanowires electrodeposited into nanoporous templates: study of the influence of sizes on crystallinity and structural properties. Physica E Low-Dimens Syst Nanostruct 37:184–188

    Article  CAS  Google Scholar 

  13. Gaddy GA, Korchev AS, McLain JL, Slaten BL, Steigerwalt ES, Mills G (2004) Light-induced formation of silver particles and clusters in cross linked PVA/PAA Films. J Phys Chem B 108:14850–14857

    Article  CAS  Google Scholar 

  14. Wang TC, Rubner MF, Cohen RE (2002) Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size. Langmuir 18:3370–3375

    Article  CAS  Google Scholar 

  15. Rifai S, Breen CA, Solis DJ, Swager TM (2006) Facile in situ silver nanoparticle formation in insulating porous polymer matrices. Chem Mater 18:21–25

    Article  CAS  Google Scholar 

  16. Zhang Z, Han M (2003) One-step preparation of size-selected and well-dispersed silver nanocrystals in polyacrylonitrile by simultaneous reduction and polymerization. J Mat Chem 13:641–643

    Article  CAS  Google Scholar 

  17. Fritzche W, Porwol H, Wiegand A, Bornmann S, Köhler JM (1998) In-situ formation of Ag-containing nanoparticles in thin polymer films. Nanostruct Mater 10:89–97

    Article  Google Scholar 

  18. Lee J, Isobe T, Senna M (1996) Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Colloid Interface Sci 77:490–494

    Article  Google Scholar 

  19. Kumar SS, Joseph J, Phani KL (2007) Novel method for deposition of gold−Prussian blue nanocomposite films induced by electrochemically formed gold nanoparticles: characterization and application to electrocatalysis. Chem Mater 19:4726–4730

    Google Scholar 

  20. Nguyen BTT, Ang JQ, Toh CS (2009) Sensitive detection of potassium ion using Prussian blue nanotube sensor. Electrochem Commun 11:1861–1864

    Article  CAS  Google Scholar 

  21. Kuo TH, Hsu CY, Lee KM, Ho KC (2009) All-solid-state electrochromic device based on poly(butyl viologen), Prussian blue, and succinonitrile. Sol Energ Mat Sol Cells 93:1755–1760

    Article  CAS  Google Scholar 

  22. Chen LC, Huang YH, Tseng KS, Ho KCJ (2002) Novel electrochromic batteries: I. A PB-WO3 cell with a theoretical voltage of 1.35 V. J New Mater Electrochem Systems 5:203–212

    CAS  Google Scholar 

  23. Du J, Wang Y, Zhou X, Xue Z, Liu X, Sun K, Lu X (2010) Improved sensing in physiological buffers by controlling the nanostructure of Prussian blue films. J Phys Chem C 114:14786–14793

    Article  CAS  Google Scholar 

  24. Ali IO, Salama TM, Thabet MS, El-Nasser KS, Hassan AM (2013) Encapsulation of ferro- and ferricyanide complexes inside ZSM-5 zeolite synthesized from rice straw: implications for synthesis of Prussian blue pigment. Mater Chem Phys 140:81–88

    Article  CAS  Google Scholar 

  25. Ram S, Gautam A, Fecht HJ, Cai J, Bansmann H, Behm RJ (2007) A new allotropic structure of silver nanocrystals nucleated and grown over planar polymer molecules. Philos Mag Lett 87:361–372

    Article  CAS  Google Scholar 

  26. Mahendia S, Tomar AK, Kumar S (2011) Nano-Ag doping induced changes in optical and electrical behaviour of PVA films. Mater Sci Engin B 176:530–534

    Article  CAS  Google Scholar 

  27. X-Ray powder diffraction file JCPDS-ICDD (Joint committee on powder diffraction standard-international centre for diffraction data, Swarthmore, PA, (1999), (a) 0483-0783

  28. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  CAS  Google Scholar 

  29. Gao X, Sun J, Hu M, Weng L, Zhou F, Liu W (2011) Improvement of anti-oxidation capability and tribological property of arc ion plated Ag film by alloying with Cu. Appl Surf Sci 257:7643–7648

    Article  CAS  Google Scholar 

  30. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B 68:88–92

    Article  CAS  Google Scholar 

  31. Foss CA Jr, Hornyak GL, Stockert JA, Martin CR (1994) Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape. J Phys Chem 98:2963–2971

    Article  CAS  Google Scholar 

  32. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  33. Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size and shape. Chem Mater 12:306–313

    Article  CAS  Google Scholar 

  34. Gallardo OAD, Moiraghi R, Macchione MA, Godoy JA, Pérez MA, Coronado EA, Macagno VA (2012) Silver oxide particles/silver nanoparticles interconversion: susceptibility of forward/backward reactions to the chemical environment at room temperature. RSC Adv 2:2923–2929

    Article  CAS  Google Scholar 

  35. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  36. Jung YJ, Govindaiah P, Choi SW, Cheong IW, Kim JH (2011) Morphology and conducting property of Ag/poly(pyrrole) composite nanoparticles: effect of polymeric stabilizers. Synth Met 161:1991–1995

    Article  CAS  Google Scholar 

  37. Dong TY, Chen WT, Wang CW, Chen CP, Chen CN, Lin MC, Song JM, Chen IG, Kao TH (2009) One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films. Phys Chem Chem Phys 11:6269–6275

    Article  CAS  Google Scholar 

  38. De Oliveira AL, Wolf A, Schüth F (2001) Highly selective propene epoxidation with hydrogen/oxygen mixtures over titania-supported silver catalysts. Catal Lett 73:157–160

    Article  Google Scholar 

  39. Dutta AK, Maji SK, Srivastava DN, Mondala A, Biswas P, Paul P, Adhikary B (2012) Peroxidase-like activity and amperometric sensing of hydrogen peroxide by Fe2O3 and Prussian Blue-modified Fe2O3 nanoparticles. J Mol Catal A 360:71–77

    Article  CAS  Google Scholar 

  40. Koncki R, Lenarczuk T, Gł S (2000) Optical sensing schemes for Prussian blue/Prussian white film system. Anal Chim Acta 424:27–35

    Article  CAS  Google Scholar 

  41. Koncki R, Wolfbeis OS (1998) Composite films of Prussian blue and N-substituted polypyrroles: fabrication and application to optical determination of pH. Anal Chem 70:2544–2550

    Article  CAS  Google Scholar 

  42. Itaya K, Ataka T, Toshima S (1982) Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J Am Chem Soc 104:476–4772

    Google Scholar 

  43. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electrochem Soc 125:886–887

    Article  CAS  Google Scholar 

  44. Ellis D, Eckhoff M, Neff V (1981) Electrochromism in the mixed-valence hexa-cyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J Phys Chem 85:1225–1231

    Article  CAS  Google Scholar 

  45. Tippins HH (1970) Charge-transfer spectra of transition-metal ions in corundum. Phys Rev B 1:126–135

    Article  CAS  Google Scholar 

  46. Reguera E, Marín E, Calderón A, Rodríguez-Hernández J (2007) Photo-induced charge transfer in Prussian blue analogues as detected by photoacoustic spectroscopy. Spectrochim Acta A 68:191–197

    Article  CAS  Google Scholar 

  47. Harish S, Joseph J, Phani KLN (2011) Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)—does it lead to gold analogue of Prussian blue? Electrochim Acta 56:5717–5721

    Article  CAS  Google Scholar 

  48. Makino R, Obayashi E, Homma N, Shiro Y, Hori H (2003) YC-1 facilitates release of the proximal his residue in the no and co complexes of soluble guanylate cyclase. J Biol Chem 278:11130–11137

    Article  CAS  Google Scholar 

  49. Mbhele ZH, Salemane MG, Van Sittert C, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  50. Grifasi F, Priola E, Chierotti MR, Diana E, Garino C, Gobetto R (2016) Vibrational–structural combined study into luminescent mixed copper(i)/copper(ii) cyanide coordination polymers. Eur J Inorg Chem 2016:2975–2983

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibraheem O. Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I.O., Salama, T.M., Mohamed, M.I. et al. Synthesis and characterization of Ag nanoparticles embedded in PVA via UV-photoreduction technique for synthesis of Prussian blue pigment. Iran Polym J 26, 511–520 (2017). https://doi.org/10.1007/s13726-017-0540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0540-2

Keywords

Navigation