Skip to main content
Log in

Porous aromatic frameworks of co-cured diethynylbenzene (DEB) and vinyltrimethoxysilane (VTMS) with good thermo-oxidative stability

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A series of new porous aromatic frameworks (PAA-VTMS) co-cured by diethynylbenzene (DEB) and vinyltrimethoxysilane (VTMS) have been described. Thermally treated PAA-VTMS were also investigated. When the ratio of DEB to VTMS was 1:1 (PAA-VTMS-4), it showed characteristic pores with uniform diameter, confirmed by scanning electron microscope (SEM) and transmission electron microscopy (TEM) analyses. The surface area of PAA-VTMS-4 was up to 457 m2/g and its pore size was 7 nm, related to the hyper-cross-linked structure with plentiful benzene units. The co-cured PAA-VTMS samples whose DEB/VTMS ratios were higher or less than 1:1 showed low surface area. CO2 uptake of PAA-VTMS-4 was 83 cm3/g at 0 °C and 72 cm3/g at 25 °C. The temperature of 5% weight loss of PAA-VTMS-4 was 388 °C in nitrogen and 346 °C in air. The surface area of the thermally treated sample (OPAA-VTMS-4) was decreased, but its CO2 uptake was as high as 115 cm3/g at 0 °C and 105 cm3/g at 25 °C. The OPAA-VTMS-4 sample almost did not decompose in N2, and the temperature of its 5% weight loss was 450 °C in air. It showed that PAA-VTMS with its new porous aromatic framework can be used at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652

    Article  CAS  Google Scholar 

  2. Macdowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies. Energy Environ Sci 3:1645–1669

    Article  CAS  Google Scholar 

  3. Germain J, Hradil J, Fréchet JMJ, Svec F (2006) High surface area nanoporous polymers for reversible hydrogen storage. Chem Mater 18:4430–4435

    Article  CAS  Google Scholar 

  4. Lee JY, Wood CD, Bradshaw D, Rosseinsky MJ, Cooper AI (2006) Hydrogen adsorption in microporous hypercrosslinked polymers. Chem Commun 25:2670–2672

    Article  Google Scholar 

  5. Germain J, Fréchet JMJ, Svec F (2007) Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage. J Mater Chem 17:4989–4997

    Article  CAS  Google Scholar 

  6. Germain J, Fréchet JM, Svec F (2009) Nanoporous, hypercrosslinked polypyrroles: effect of crosslinking moiety on pore size and selective gas adsorption. Chem Commun 12:1526–1528

    Article  Google Scholar 

  7. Dawson R, Su F, Niu H, Wood CD, Jones JTA, Khimyak YZ, Cooper AI (2008) Mesoporous poly(phenylenevinylene) networks. Macromolecules 41:1591–1593

    Article  CAS  Google Scholar 

  8. Germain J, Svec F, Fréchet JMJ (2008) Preparation of size-selective nanoporous polymer networks of aromatic rings: potential adsorbents for hydrogen storage. Chem Mater 20:7069–7076

    Article  CAS  Google Scholar 

  9. Bildirir H, Osken I, Schmidt J, Ozturk T, Thomas A (2016) Chemical redox properties of a donor–acceptor conjugated microporous dithienothiophene-benzene co-polymer formed via, suzuki-miyaura cross-coupling. ChemistrySelect 1:748–751

    Article  CAS  Google Scholar 

  10. Schmidt J, Weber J, Epping JD, Antonietti M, Thomas A (2009) Microporous conjugated poly(thienylenearylene) networks. Adv Mater 21:702–705

    Article  CAS  Google Scholar 

  11. Germain J, Fréchet JMJ, Svec F (2009) Nanoporous polymers for hydrogen storage. Small 5:1098–1111

    Article  CAS  Google Scholar 

  12. Dawson R, Cooper AI, Adams DJ (2013) Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polym Int 62:345–352

    Article  CAS  Google Scholar 

  13. Xie Z, Wang C, Dekrafft KE, Lin W (2011) Highly stable and porous cross-linked polymers for efficient photocatalysis. J Am Chem Soc 133:2056–2059

    Article  CAS  Google Scholar 

  14. Merino E, Verde-Sesto E, Maya EM, Corma A, Iglesias M, Sánchez F (2014) Mono-functionalization of porous aromatic frameworks to use as compatible heterogeneous catalysts in one-pot cascade reactions. Appl Catal A Gen 469:206–212

    Article  CAS  Google Scholar 

  15. Zhao J (2014) A nanoporous organic polymer constructed from a 1,3,5-triazine derivative via ethynyl cyclotrimerization reaction: synthesis and carbon dioxide capture. J Chem Pharm Res 6:322–326

    Google Scholar 

  16. Zhang J, Luo J, Zhang X (2015) A carbazolic porous organic framework as an efficient, metal-free visible-light photocatalyst for organic synthesis. Acs Catal 5:2250–2254

    Article  Google Scholar 

  17. Liu J, Lam JWY, Tang BZ (2009) Acetylenic polymers: syntheses, structures, and functions. Chem Rev 109:5799–5867

    Article  CAS  Google Scholar 

  18. Ren H, Ben T, Sun F, Guo M, Jing X, Ma H, Cai K, Qiu S, Zhu G (2011) Synthesis of a porous aromatic framework for adsorbing organic pollutants application. J Mater Chem 21:10348–10353

    Article  CAS  Google Scholar 

  19. Yuan Y, Sun F, Ren H, Jing X, Wang W, Ma H, Zhao H, Zhu G (2011) Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. J Mater Chem 21:13498–13502

    Article  CAS  Google Scholar 

  20. Hanková V, Slováková E, Zedník J, Vohlídal J, Sivkova R, Balcar H, Zukal A, Brus J, Sedláček J (2011) Polyacetylene-type networks prepared by coordination polymerization of diethynylarenes: new type of microporous organic polymers. Macromol Rapid Comm 33:158–163

    Article  Google Scholar 

  21. Zukal A, Slováková E, Balcar H, Sedláček J (2013) Polycyclotrimers of 1,4-diethynylbenzene, 2,6-diethynylnaphthalene, and 2,6-diethynylanthracene: preparation and gas adsorption properties. Macromol Chem Phys 214:2016–2026

    Article  CAS  Google Scholar 

  22. Stahlová S, Slováková E, Vaňkátová P, Zukal A, Kubů M, Brus J, Bondarev D, Moučka R, Sedláček J (2015) Chain-growth copolymerization of functionalized ethynylarenes with 1,4-diethynylbenzene and 4,4′-diethynylbiphenyl into conjugated porous networks. Eur Polym J. 67:252–263

    Article  Google Scholar 

  23. Yan Z, Ren H, Ma H, Yuan R, Yuan Y, Zou X, Sun F, Zhu G (2013) Construction and sorption properties of pyrene-based porous aromatic frameworks. Microporous Mesoporous Mater 173:92–98

    Article  CAS  Google Scholar 

  24. Normatov J, Silverstein MS (2007) Interconnected silsesquioxane—organic networks in porous nanocomposites synthesized within high internal phase emulsions. Chem Mater 20:1571–1577

    Article  Google Scholar 

  25. Kanamori K (2014) Monolithic silsesquioxane materials with well-defined pore structure—ERRATUM. J Mater Res 30:2773–2786

    Article  Google Scholar 

  26. Ogawa M, Kikuchi T (1998) Preparation of self-standing transparent films of silica–surfactant mesostructured materials and the conversion to porous silica films. Adv Mater 10:1077–1080

    Article  CAS  Google Scholar 

  27. Itoh M, Inoue K, Iwata K, Ishikawa J, Takenaka Y (1997) A heat-resistant silicon-based polymer. Adv Mater 9:1187–1190

    Article  CAS  Google Scholar 

  28. Itoh M, Inoue K, Iwata K, Mitsuzuka M, Takenaka Y (1997) New highly heat-resistant polymers containing silicon: poly(silyleneethynylenephenyleneethynylene)s. Macromolecules 30:694–701

    Article  CAS  Google Scholar 

  29. Wang F, Zhang J, Huang J, Yan H, Huang F, Du L (2006) Synthesis and characterization of poly(dimethylsilyleneethynylenephenyleneethynylene) terminated with phenylacetylene. Polym Bull 56:19–26

    Article  CAS  Google Scholar 

  30. Wu Y, Yu R, Hu L, Li Q, Zhu C (2014) Thermal stability of cocured blends of vinyl trimethoxysilane and aryl acetylene resins with different posttreatments. J Appl Polym Sci 131:631–644

    Google Scholar 

  31. Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54:2201–2221

    Article  Google Scholar 

  32. Zhang C, Yang X, Zhao Y, Wang X, Yu M, Jiang J (2015) Bifunctionalized conjugated microporous polymers for carbon dioxide capture. Polymer 61:36–41

    Article  CAS  Google Scholar 

  33. Dawson R, Adams DJ, Cooper AI (2011) Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem Sci 2:1173–1177

    Article  CAS  Google Scholar 

  34. Martín CF, Stöckel E, Clowes R, Adams DJ, Cooper AI, Pis JJ, Rubiera F, Pevida C (2011) Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J Mater Chem 21:5475–5483

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (contract Grant Number 51003030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruobing Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yu, R., Li, Q. et al. Porous aromatic frameworks of co-cured diethynylbenzene (DEB) and vinyltrimethoxysilane (VTMS) with good thermo-oxidative stability. Iran Polym J 26, 413–421 (2017). https://doi.org/10.1007/s13726-017-0530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0530-4

Keywords

Navigation