Skip to main content
Log in

Electrospun PVDF/MWCNT/OMMT hybrid nanocomposites: preparation and characterization

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Electrospinning technique was employed to prepare neat PVDF, nanoclay-PVDF and carbon nanotube (MWCNT)-PVDF nanocomposites, and nanoclay-carbon nanotube-PVDF hybrid nanocomposites. A mixture of dimethyl formamide/acetone (60/40) was used to fluidize the polymer and nanofillers. Electrospinning process was conducted under optimized conditions. Maximum modification was achieved at 0.15 wt% nanofiller. Rheological measurements on the prepared solutions revealed decreased material functions in the presence of nanoclay, whereas the rheological properties of MWCNT-PVDF solution did not show any significant reduction compared with those of neat PVDF solution. The behaviors of the hybrid nanocomposite solutions, though dependent on their composition and their material functions, increased with MWCNT concentration. These differences, together with variations in electrical properties of nanoclay and MWCNT, led to changes in morphology of the fiber during electrospinning process. Under electrospinning conditions designed for neat PVDF solution, mats with beads and with the highest fiber diameter were produced. Meanwhile, incorporation of both nanoclay and MWCNT into the solutions resulted in bead-free fibers with thinner diameter. Fourier transformed infrared spectrophotometry (FTIR) and X-ray diffractometry (XRD) were used to measure the β-phase crystalline content in electrospun mats. Complete agreement was found between the FTIR and XRD results. The lowest and highest β-phase contents were obtained for neat PVDF mat and hybrid nanocomposite mat containing 0.1 wt% clay, respectively. The mixing procedure of nanofillers and the PVDF solution was also found to be important. In case of hybrid nanocomposites, more β-crystals were formed when the nanoclay was first mixed in the absence of MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bharti V, Nath R (2001) Piezo-, pyro- and ferroelectric properties of simultaneously stretched and corona poled extruded poly(vinyl chloride) films. J Phys D Appl Phys 34:667–672

    Article  CAS  Google Scholar 

  2. Giurgiutiu V, Lyshevski SE (2009) Micromechatronics: modeling, analysis, and design with MATLAB, 2nd edn. CRC Press, New York

    Book  Google Scholar 

  3. Jain A, Jayanthkumar S, Kumar MR, Sriganesh A, Srikanth S (2014) PVDF-PZT composite films for transducer applications. Mech Adv Mater Struct 21:181–186

    Article  CAS  Google Scholar 

  4. Juan P, Xiaojun Y, Yadong J, Chieh C, Liwei Li (2010) Piezoelectric actuation of direct-write electrospun fibers. Sens Actuators A Phys 164:131–136

    Article  Google Scholar 

  5. Li B, Xu C, Zheng J, Xu C (2014) Sensitivity of pressure sensors enhanced by doping silver nanowires. Sensors 14:9889–9899

    Article  Google Scholar 

  6. Yang CL, Li ZH, Li WJ, Liu HY, Xiao QZ, Lei GT, Ding YH (2015) Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVDF–SiO2 nanocomposite fibers for lithium-ion batteries. J Membr Sci 495:341–350

    Article  CAS  Google Scholar 

  7. Wu CH, Chou M (2016) Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes. Compos Sci Technol 127:127–133

    Article  Google Scholar 

  8. Martins P, Lopes A, Lanceros S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706

    Article  CAS  Google Scholar 

  9. Shao H, Fang J, Wang H, Lang CH, Lin T (2015) Robust mechanical-to-electrical energy conversion from Short-distance electrospun poly(vinylidene fluoride) fiber webs. ACS Appl Mater Int 40:22551–22557

    Article  Google Scholar 

  10. Tasaka S, Miyata S (1985) Effects of crystal structure on piezoelectric and ferroelectric properties of co poly(vinylidene fluoride-tetrafluoro ethylene). J Appl Phys 57:906–910

    Article  CAS  Google Scholar 

  11. Salimi A, Yousefi AA (2004) Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J Polym Sci Part B Polym Phys 42:3487–3495

    Article  CAS  Google Scholar 

  12. Ting Y, Gunwan H, Sugondo A, Chiu CH (2013) A new approach of polyvinylidene fluoride (PVDF) poling method for higher electric response. Ferroelectrics 446:28–38

    Article  CAS  Google Scholar 

  13. Andrew JS, Clarke DR (2008) Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 24:670–672

    Article  CAS  Google Scholar 

  14. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  CAS  Google Scholar 

  15. Cozza ES, Monticelli O, Marsano E, Cebe P (2012) On the electrospinning of PVDF: influence of the experimental conditions on the nanofiber properties. Polym Int 62:41–48

    Article  Google Scholar 

  16. Bhavanasi V, Kumar V, Parida K, Wang J, See P (2016) Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl Mater Int 8:521–529

    Article  CAS  Google Scholar 

  17. An N, Liu H, Ding Y, Zhang M, Tang Y (2011) Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Appl Surf Sci 257:3831–3835

    Article  CAS  Google Scholar 

  18. Chen LF, Hong YP, Chen XJ, Wu QL, Huang QJ, Luo XT (2004) Preparation and properties of polymer matrix piezoelectric composites containing aligned BaTiO3 whiskers. J Mater Sci 39:2997–3001

    Article  CAS  Google Scholar 

  19. Ye HJ, Shao WZ, Zhen L (2013) Crystallization kinetics and phase transformation of poly(vinylidene fluoride) films incorporated with functionalized BaTiO3 nanoparticles. J Appl Polym Sci 29:2940–2949

    Article  Google Scholar 

  20. Dillon DR, Tenneti K, Li CH, Ko F, Sics L, Hsiao B (2006) On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites. Polymer 47:1678–1688

    Article  CAS  Google Scholar 

  21. Peng QY, Cong PH, Liu XJ, Liu TX, Huang SH, Li T (2009) The preparation of PVDF/clay nanocomposites and the investigation of their tribological properties. Wear 266:713–720

    Article  CAS  Google Scholar 

  22. Rahmani P, Dadbin S, Frounchi M (2012) Characterization of PVDF/nanoclay nanocomposites prepared by melt, solution, and co-precipitation methods. Int J Polym Anal Charact 17:291–301

    Article  CAS  Google Scholar 

  23. Priya L, Jog JP (2002) Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization and dynamic mechanical behavior studies. J Polym Sci Part B Polym Phys 40:1682–1689

    Article  CAS  Google Scholar 

  24. Priya L, Jog JP (2003) Polymorphism in intercalated poly(vinylidene fluoride)/clay nanocomposites. J Appl Polym Sci 89:2036–2040

    Article  CAS  Google Scholar 

  25. Priya L, Jog JP (2003) Intercalated poly(vinylidene fluoride)/clay nanocomposites: structure and properties. J Polym Sci Part B Polym Phys 41:31–38

    Article  CAS  Google Scholar 

  26. Liu YL, Li Y, Xu JT, Fan ZQ (2010) Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride). ACS Appl Mater Int 2:1759–1768

    Article  CAS  Google Scholar 

  27. Neppalli R, Wanjale S, Birajdar M, Causin V (2013) The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly(vinylidene fluoride). Eur Polym J 49:90–99

    Article  CAS  Google Scholar 

  28. Patro TU, Mhalgi M, Khakhar DV, Misra A (2008) Studies on poly(vinylidene fluoride)–clay nanocomposites: effect of different clay modifiers. Polymer 49:3486–3499

    Article  CAS  Google Scholar 

  29. Seoul CH, Kim Y-T, Baek C-K (2003) Electrospinning of poly(vinylidene fluoride)/dimethylformamide solutions with carbon nanotubes. J Polym Sci Part B Polym Phys 41:1572–1577

    Article  CAS  Google Scholar 

  30. Huang S, Yee WA, Tjiu WC, Liu Y, Kotaki M, Boey YCF, Ma J, Liu T, Lu X (2008) Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. Langmuir 24:13621–13626

    Article  CAS  Google Scholar 

  31. Almasri A, Ounaies Z, Kim YS, Grunlan J (2008) Characterization of solution-processed double-walled carbon nanotube/poly(vinylidene fluoride) nanocomposites. Macromol Mater Eng 293:123–131

    Article  CAS  Google Scholar 

  32. Yousefi AA (2011) Hybrid polyvinylidene fluoride/nanoclay/MWCNT nanocomposites: PVDF crystalline transformation. Iran Polym J 20:725–733

    CAS  Google Scholar 

  33. Liu ZH, Pan CT, Lin LW, Lai HW (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sens Actuators A Phys 193:13–24

    Article  CAS  Google Scholar 

  34. Yu W, Zhao Z, Zheng S, Li B, Long B, Jiang Q (2008) Structural characteristics of poly(vinylidene fluoride)/clay nanocomposites. Mater Lett 62:747–750

    Article  CAS  Google Scholar 

  35. Chiu FC (2014) Comparisons of phase morphology and physical properties of PVDF nanocomposites filled with organoclay and/or multi-walled carbon nanotubes. Mater Chem Phys 143:681–692

    Article  CAS  Google Scholar 

  36. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160

    Article  CAS  Google Scholar 

  37. Zhao ZZ, Li JQ, Yuan XY, Li X, Zhang YY, Sheng J (2005) Preparation and properties of electrospun poly(vinylidene fluoride) membranes. J Appl Polym Sci 97:466–474

    Article  CAS  Google Scholar 

  38. Lei T, Cai X, Wang X, Yu L, Hu X, Zhen G, Lv W, Wang L, Wu D, Sun D, Lin L (2013) Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Adv 3:24952–24958

    Article  CAS  Google Scholar 

  39. Xing CH, Guan J, Li Y, Li J (2014) Effect of a room-temperature ionic liquid on the structure and properties of electrospun poly(vinylidene fluoride) nanofibers. ACS Appl Mater Int 6:4447–4457

    Article  CAS  Google Scholar 

  40. Khajehpour M, Arjmand M, Sundararaj U (2016) Dielectric properties of multiwalled carbon nanotube clay/polyvinylidene fluoride nanocomposites: effect of clay incorporation. Polym Compos 37:161–167

    Article  CAS  Google Scholar 

  41. Sencadas V, Gregorio R, Lanceros-Mendez S (2009) α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci Phys 48:514

    Article  CAS  Google Scholar 

  42. Cho S, Seop Lee J, Jang JY (2015) Poly(vinylidene fluoride)/NH2 treated graphene nanodot/reduced graphene oxide nanocomposites with enhanced dielectric performance for ultrahigh energy density capacitor. ACS Appl Mater Int 7:9668–9681

    Article  CAS  Google Scholar 

  43. Yousefi AA, Salarian MM (2012) Effect of polyamide 6 on crystalline structure of polymer in PVDF-nanoclay nanocomposite. Iran J Polym Sci Tech 25:41–51

    CAS  Google Scholar 

  44. Fornes TD, Yoon PJ, Keskkula H, Paul DR (2001) Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42:9929–9940

    Article  CAS  Google Scholar 

  45. Gregorio R Jr, Ueno E (1999) Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J Mater Sci 34:4489–4500

    Article  CAS  Google Scholar 

  46. Ke K, Potschke P, Jehnichen D, Fischer D, Voit B (2014) Achieving β-phase poly(vinylidene fluoride) from melt cooling: effect of surface functionalized carbon nanotubes. Polymer 55:611–619

    Article  CAS  Google Scholar 

  47. Ivanoska-Dacikj A, Bogoeva-Gaceva G, Buzarovska A (2015) Clay improved dispersion of carbon nanotubes in different solvents. Contributions Sec Nat Math Biotech Sci MASA 36:5–10

    CAS  Google Scholar 

  48. da Silva AB, Marini J, Gelves G, Sundararaj U, Gregorio R, Bretas RES (2013) Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. Eur Polym J 49:3318–3327

    Article  CAS  Google Scholar 

  49. Martins JN, Kersch M, Altstadt V, Oliveira RVB (2013) Poly(vinylidene fluoride)/polyaniline/carbon nanotubes nanocomposites: influence of preparation method and oscillatory shear on morphology and electrical conductivity. Polym Test 32:1511–1521

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Yousefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.M., Yousefi, A.A. Electrospun PVDF/MWCNT/OMMT hybrid nanocomposites: preparation and characterization. Iran Polym J 26, 331–339 (2017). https://doi.org/10.1007/s13726-017-0522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0522-4

Keywords

Navigation