Skip to main content
Log in

Study on the inverse emulsion copolymerization of microgels based on acrylamide/2-acrylamido-2-methylpropane sulfonic acid

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Inverse emulsion copolymerization of acrylamide and AMPS was conducted, and the effects of cross-linker concentration, initiator type, and reaction temperature on particle size distribution, equilibrium swelling and thermal properties were studied. Fourier transform infrared spectrophotometry (FTIR) and differential scanning calorimetry (DSC) results were used to confirm the copolymerization of the monomers. In this study, relatively high amounts of AMPS comonomer were used successfully to synthesize AAm/AMPS based microgels. Thermal properties were determined using thermogravimetric analysis (TGA) and it was found that degradation threshold shifted to higher temperatures with increasing cross-linking. There was a good agreement between the DSC and TGA thermograms depicting the different stages of microgel degradation including the departure of amide and sulphonic acid groups. Dynamic light scattering (DLS) demonstrated that higher cross-link densities resulted in the formation of smaller particles with narrower distribution and lower swelling capacity. The results of scanning electron microscopy (SEM) showed that the more hydrophobicity of the initiator led to the decrease in particle size and swelling capability. Swelling ratio reached its maximum value at about 50 °C. Interestingly, mean particle size had a close relation with equilibrium swelling as samples with lower mean particle diameters exhibited lower swelling capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atta AM, El-Mahdy GAA, Al-Lohedan HA, Ezzat AO (2014) Synthesis and application of hybrid polymer composites based on silver nanoparticles as corrosion protection for line pipe steel. Molecules 19:6246–6262

    Article  Google Scholar 

  2. Lorenzo FD, Seiffert S (2013) Macro- and microrheology of heterogeneous microgel packings. Macromolecules 46:1962–1972

    Article  Google Scholar 

  3. Still T, Chen K, Alsayed AM, Aptowicz KB, Yodh AG (2013) Synthesis of micrometer-size poly (N-isopropylacrylamide) microgel particles with homogeneous crosslinker density and diameter control. J Colloid Interface Sci 405:96–102

    Article  CAS  Google Scholar 

  4. Kayaman N, Okay O, Baysal BM (1998) Swelling of polyacrylamide gels in polyacrylamide solutions. Polym Sci Polym Phys 36:1313–1320

    Article  CAS  Google Scholar 

  5. Rumyantsev AM, Santer S, Kramarenko EY (2014) Theory of collapse and overcharging of a polyelectrolyte microgel induced by an oppositely charged surfactant. Macromolecules 47:5388–5399

    Article  CAS  Google Scholar 

  6. Sabhapondit A, Borthakur A, Haque I (2003) Water soluble acrylamidomethyl propane sulfonate (AMPS) copolymer as an enhanced oil recovery chemical. Energ Fuel 17:683–688

    Article  CAS  Google Scholar 

  7. Starodoubtsev SG, Lyubimov AA, Khokhlov AR (2003) Interaction of sodium poly(2-acrylamide-2-methyl-1-propanesulfonate) linear polymer and gel with metal salts. J Phys Chem B 107:12206–12211

    Article  CAS  Google Scholar 

  8. Voorn DJ, Ming W, Van Herk AM (2006) Polymer-clay nanocomposite latex particles by inverse pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules 39:2137–2143

    Article  CAS  Google Scholar 

  9. Zolfaghari R, Katbab AA, Nabavizadeh J, Yousefzadeh Tabasi R, Hossein Nejad M (2006) Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications. Appl Polym Sci 100:2096–2103

    Article  CAS  Google Scholar 

  10. Durmaz S, Okay O (2000) Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization. Polymer 41:3693–3704

    Article  CAS  Google Scholar 

  11. McCormick CL, Chen GS (1982) Water-soluble copolymers. IV. Random copolymers of acrylamide with sulfonated comonomer. Polym Sci Polym Chem 20:817–838

    Article  CAS  Google Scholar 

  12. Cho EC, Kim JW, Fernández-Nieves A, Weitz DA (2008) Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles. Nano Lett 8:168–172

    Article  CAS  Google Scholar 

  13. Kaşgöz H, Durmuş A, Kaşgöz A (2007) Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym Adv Technol 19:213–220

    Google Scholar 

  14. Kwok AY, Qiao GG, Solomon DH (2003) Synthetic hydrogels. 1. Effects of solvent on poly(acrylamide) networks. Polymer 44:6195–6203

    Article  CAS  Google Scholar 

  15. Wu YM, Wang YP, Yu YQ, Xu J, Chen QF (2006) Dispersion polymerization of acrylamide with 2-acrylamido-2-methyl-1-propane sulfonate in aqueous solution. J Appl Polym Sci 102:2379–2385

    Article  CAS  Google Scholar 

  16. Zhao C, Yuan G, Han CC (2012) Stabilization, aggregation, and gelation of microsphere induced by thermosensitive microgel. Macromolecules 45:9468–9474

    Article  CAS  Google Scholar 

  17. Adelnia H, Pourmahdian S (2014) Soap-free emulsion polymerization of poly (methyl methacrylate-co-butyl acrylate): effects of anionic comonomers and methanol on the different characteristics of the latexes. Colloid Polym Sci 292:197–205

    Article  CAS  Google Scholar 

  18. Adelnia H, Riazi H, Saadat Y, Hosseinzadeh S (2013) Synthesis of monodisperse anionic submicron polystyrene particles by stabilizer-free dispersion polymerization in alcoholic media. Colloid Polym Sci 291:1741–1748

    Article  CAS  Google Scholar 

  19. Yiamsawas D, Kangwansupamonkon W, Chailapakul O, Kiatkamjornwong S (2007) Synthesis and swelling properties of poly[acrylamide-co-(crotonic acid)] superabsorbents. React Funct Polym 67:865–882

    Article  CAS  Google Scholar 

  20. Gawlitza K, Ivanova O, Radulescu A, Holderer O, Klitzing RV, Stefan W (2015) Bulk phase and surface dynamics of PEG microgel particles. Macromolecules 48:5807–5815

    Article  CAS  Google Scholar 

  21. Sahiner N, Singh M (2007) In situ micro/nano-hydrogel synthesis from acrylamide derivates with lecithin organogel system. Polymer 48:2827–2834

    Article  CAS  Google Scholar 

  22. Ju X, Huang P, Xu N, Shi J (2002) Studies on the preparation of mesoporous titania membrane by the reversed micelle method. J Membr Sci 202:63–71

    Article  CAS  Google Scholar 

  23. Fitzgerald MM, Bootsma K, Berberich JA, Sparks JL (2015) Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: comparison with muscle tissue. Biomacromolecules 16:1497–1505

    Article  CAS  Google Scholar 

  24. Preda N, Rusen E, Musuc A, Enculescu M, Matei E, Marculescu B, Fruth V, Enculescu I (2010) Synthesis and properties of poly (methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite. Mater Res Bull 45:1008–1012

    Article  CAS  Google Scholar 

  25. Choi J, Kwak SY, Kang S, Lee SS, Park M, Lim S, Kim J, Choe CR, Hong SI (2002) Synthesis of highly crosslinked monodisperse polymer particles: effect of reaction parameters on the size and size distribution. Polym Sci A Polym Chem 40:4368–4377

    Article  CAS  Google Scholar 

  26. Tcholakova S, Denkov ND, Lips A (2008) Comparison of solid particles, globular proteins and surfactants as emulsifiers. Phys Chem Chem Phys 10:1608–1627

    Article  CAS  Google Scholar 

  27. Contreras-Cáceres R, Schellkopf L, Fernández-López C, Pastoriza-Santos I, Pérez-Juste J, Stamm M (2015) Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels. Langmuir 31:1142–1149

    Article  Google Scholar 

  28. Zavgorodnya O, Serpe MJ (2011) Assembly of poly (N-isopropylacrylamide)-co-acrylic acid microgel thin films on polyelectrolyte multilayers: effects of polyelectrolyte layer thickness, surface charge, and microgel solution pH. Colloid Polym Sci 289:591–602

    Article  CAS  Google Scholar 

  29. Limparyoon N, Seetapan N, Kiatkamjornwong S (2011) Acrylamide/2-acrylamido-2-methylpropane sulfonic acid and associated sodium salt superabsorbent copolymer nanocomposites with mica as fire retardants. Polym Degrad Stabil 96:1054–1063

    Article  CAS  Google Scholar 

  30. Parasuraman D, Leung E, Serpe MJ (2012) Poly(N-isopropylacrylamide) microgel based assemblies for organic dye removal from water: microgel diameter effects. Colloid Polym Sci 290:1053–1064

    Article  CAS  Google Scholar 

  31. Sahoo PK, Sahu GC, Swain SK (2003) Nonconventional emulsion polymerization of methyl methacrylate. Effect of Cu(II)/histidine complex catalyst and different peroxo-salts. Polym J 35:364–371

    Article  CAS  Google Scholar 

  32. Hosseinzadeh S, Saadat Y, Eslami H, Afshar-Taromi F, Hosseinzadeh A, Rimaz M, Hooshangi V (2012) Effect of second monomer and initiator type, mixing method, and stabilizer content on the shape of the particles produced by seeded dispersion polymerization in the presence of saturated hydrocarbon droplets. Colloid Polym Sci 290:1713–1719

    Article  CAS  Google Scholar 

  33. Shen S, Sudol E, El-aasser M (1993) Control of particle size in dispersion polymerization of methyl methacrylate. J Polym Sci 31:1393–1402

    Article  CAS  Google Scholar 

  34. Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486

    Article  CAS  Google Scholar 

  35. Crowther HM, Vincent B (1998) Swelling behavior of poly-N-isopropylacrylamide microgel particles in alcoholic solutions. Colloid Polym Sci 276:46–51

    Article  CAS  Google Scholar 

  36. Funke W, Okay O, Joos-Müller B (1998) Microgels-intramolecularly crosslinked macromolecules with globular structure. Adv Polym Sci 136:140–234

    Google Scholar 

  37. Flammer U, Hirsch M, Funke W (1994) Particle growth in copolymerization of self-emulsifying, unsaturated polyester and styrene. Macromol Rapid Commun 15:343–349

    Article  CAS  Google Scholar 

  38. Liang L, Funke W (1996) Cross-linking self-emulsifying copolymerization of an unsaturated polyester and styrene. Macromolecules 29:8650–8655

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of Iran Oil Company is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Pourmahdian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhanimatin, M.B., Pourmahdian, S. Study on the inverse emulsion copolymerization of microgels based on acrylamide/2-acrylamido-2-methylpropane sulfonic acid. Iran Polym J 25, 405–413 (2016). https://doi.org/10.1007/s13726-016-0432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-016-0432-x

Keywords

Navigation