Skip to main content

Advertisement

Log in

Effect of processing parameters on morphology and tensile properties of PP/EPDM/organoclay nanocomposites fabricated by friction stir processing

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Nanocomposites-based on polypropylene (PP), ethylene-propylene diene monomer (EPDM) and Cloisite 15A have wide applications in automotive and aerospace industries and medical apparatus due to their excellent mechanical, thermal and chemical properties. In this study, a nanocomposite of PP/EPDM/nanoclay containing PP (77 wt%), EPDM (20 wt%) and nanoclay (3 wt%) was fabricated by friction stir processing (FSP) method. X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry and tensile testing were performed to determine the morphology and tensile properties of this nanocomposite. The Box-Behnken design was applied to investigate the effect of the process parameters such as tool rotational speed, traverse speed and shoulder temperature on the tensile properties of the nanocomposite. The results showed that the tensile strength increased from 15.8 to 18.2 MPa with increasing the tool rotational speed and shoulder temperature while the elongation-at-break dropped from 46 to 22 %. A maximum tensile strength of 17.6 MPa and a minimum elongation-at-break of 26 % were obtained at the traverse speed of 40 mm/min when the rotational speed and shoulder temperature were at the central levels themselves. The prediction models showed that when the tool rotational speed, traverse speed and shoulder temperature were set, in the given order, as 1200 rpm, 45.65 mm/min and 113.65 °C, a simultaneous maximization of tensile strength of 16.03 MPa and elongation-at-break of 46.41 % was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Lee HS, Fasulo PD, Rodgers WR, Paul DR (2005) TPO based nanocomposites. Part 1: morphology and mechanical properties. Polymer 46:11673–11689

    Article  CAS  Google Scholar 

  2. Mahallati P, Arefazar A, Naderi G (2011) Thermal and morphological properties of thermoplastic elastomer nanocomposites based on PA6/NBR. Iran J Chem Eng 8:56–65

    Google Scholar 

  3. Thompson A, Bianchi O, Amorim C, Lemos C, Teixeira SR, Samios D, Giacomelli C, Crespo JS, Machado G (2011) Uniaxial compression and stretching deformation of an i-PP/EPDM/organoclay nanocomposite. Polymer 52:1037–1044

    Article  CAS  Google Scholar 

  4. Lei SG, Hoa SV, Ton-That MT (2006) Effect of clay types on the processing and properties of polypropylene nanocomposites. Compos Sci Technol 66:1274–1279

    Article  CAS  Google Scholar 

  5. Nakhaei MR, Mostafa Arab NB, Naderi G (2013) Application of response surface methodology for weld strength prediction in laser welding of polypropylene/clay nanocomposite. Iran Polym J 22:351–360

    Article  CAS  Google Scholar 

  6. Avella M, Cosco S, Volpe GD, Errico ME (2005) Crystallization behavior and properties of exfoliated isotactic polypropylene/organoclay nanocomposites. Adv Polym Technol 24:132–144

    Article  CAS  Google Scholar 

  7. Nakhaei MR, Mostafa Arab NB, Naderi G, Hoseinpour M (2013) Experimental study on optimization of CO2 laser welding parameters for polypropylene-clay nanocomposite welds. J Mech Sci Technol 27:843–848

    Article  Google Scholar 

  8. Su F, Huang H, Zhao Y (2011) Microstructure and mechanical properties of polypropylene/poly (ethylene-co-octene copolymer)/clay ternary nanocomposites prepared by melt blending using supercritical carbon dioxide as a processing aid. Compos B 42:421–428

    Article  Google Scholar 

  9. Naderi G, Khosrokhavar R, Shokoohi S, Bakhshandeh GR, Ghoreishy MHR (2014) Dynamically vulcanized polypropylene/ethylene-propylene diene monomer/organoclay nanocomposites: effect of mixing sequence on structural, rheological, and mechanical properties. J Vinyl Additive Technol. doi:10.1002/vnl.21432

    Google Scholar 

  10. Khosrokhavar R, Naderi G, Bakhshandeh GR, Ghoreishy MHR (2011) Effect of processing parameters on PP/EPDM/organoclay nanocomposites using Taguchi analysis method. Iran Polym J 20:41–53

    CAS  Google Scholar 

  11. Li C, Jiang Z, Tang T (2014) Morphological evolution and properties of thermoplastic vulcanizate/organoclay nanocomposites. J Appl Polym Sci 131:40618. doi:10.1002/app.40618

    Google Scholar 

  12. Khodabakhshi F, Simchi A, Kokabi AH, Nosko M, Simanĉik F, Švec P (2014) Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Mater Sci Eng A605:108–118

    Article  Google Scholar 

  13. Liu ZY, Xiao BL, Wang WG, Ma ZY (2014) Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon 69:264–274

    Article  CAS  Google Scholar 

  14. Hejazi I, Sharif F, Garmabi H (2011) Effect of material and processing parameters on mechanical properties of polypropylene/ethylene–propylene–diene–monomer/clay nanocomposites. Mater Des 32:3803–3809

    Article  CAS  Google Scholar 

  15. Naderi G, Lafleur PG, Dubois C (2008) The influence of matrix viscosity and composition on the morphology, rheology, and mechanical properties of thermoplastic elastomer nanocomposites based on EPDM/PP. Polym Compos 29:1301–1309

    Article  CAS  Google Scholar 

  16. Thompson A, Marczynski E, Amorim CL, Crespo JS, Giacomelli C, Bianchi O, Teixeira SR (2009) Morphology and properties of a PP/EPDM/nanoclay composite. https://inis.iaea.org/search/search.aspx?orig_q=RN:41123551

  17. Frounchi M, Dadbin S, Salehpour Z, Noferesti M (2006) Gas barrier properties of PP/EPDM blend nanocomposites. J Membr Sci 282:142–148

    Article  CAS  Google Scholar 

  18. Alyali SH, Mostafapour A, Azarsa E (2012) Fabrication of PP/Al2O3 surface nanocomposite via novel friction stir processing approach. Int J Adv Eng Technol 3:598–605

    Google Scholar 

  19. Pahlavanpour M, Moussaddy H, Ghossein E, Hubert P, Lévesque M (2013) Prediction of elastic properties in polymer–clay nanocomposites: analytical homogenization methods and 3D finite element modeling. Comput Mater Sci 79:206–215

    Article  CAS  Google Scholar 

  20. Wang W, Tang L, Qu B (2003) Mechanical properties and morphological structures of short glass fiber reinforced PP/EPDM composite. Eur Polym J 39:2129–2134

    Article  CAS  Google Scholar 

  21. Chen Y, Xu CH, Cao L, Wang Y, Cao X (2012) PP/EPDM-based dynamically vulcanized thermoplastic olefin with zinc dimethacrylate: preparation, rheology, morphology, crystallization and mechanical properties. Polym Test 31:728–736

    Article  CAS  Google Scholar 

  22. Sridevi K, Soundararajan S, Palanivelu K (2011) Studies on mechanical, physical and thermal properties and characterization of nanocomposites of PP/EPDM blend. J Polym Mater 28:171–185

    CAS  Google Scholar 

  23. Chiu F, Yen HZ, Chen C (2010) Phase morphology and physical properties of PP/HDPE/organoclay (nano) composites with and without a maleated EPDM as a compatibilizer. Polym Test 29:706–716

    Article  CAS  Google Scholar 

  24. Rane AV, Abitha VK (2015) Study of mechanical, thermal and microstructural properties of EPDM/polypropylene/nano clay composites with variable compatibilizer dosage. J Mater Environ Sci 6:60–69

    Google Scholar 

  25. Montgomery D (2001) Design and analysis of experiments. John Wiley, New York

    Google Scholar 

  26. Solouk A, Solati M, Najarian S, Mirzadeh H, Seifalian A (2011) Optimization of acrylic acid grafting onto POSS-PCU nanocomposite using response surface methodology. Iran Polym J 20:91–107

    CAS  Google Scholar 

  27. Olabi AG, Benyounis KY, Hashmi MSJ (2007) Application of response surface methodology in describing the residual stress distribution in CO2 laser welding of AISI304. Strain 43:37–46

    Article  Google Scholar 

  28. Akhtar MN, Sulong A, Karim S, Azhari CH, Raza MR (2015) Evaluation of thermal, morphological and mechanical properties of PMMA/NaCl/DMF electrospun nanofibers: an investigation through surface methodology approach. Iran Polym J 24:1025–1038

    Article  CAS  Google Scholar 

  29. Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12:143–157

    Article  Google Scholar 

  30. Mishra JK, Hwang KJ, Ha CS (2005) Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer 46:1995–2002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei, M.R., Naderi, G. & Mostafapour, A. Effect of processing parameters on morphology and tensile properties of PP/EPDM/organoclay nanocomposites fabricated by friction stir processing. Iran Polym J 25, 179–191 (2016). https://doi.org/10.1007/s13726-015-0412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0412-6

Keywords

Navigation