Skip to main content
Log in

Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Fiber–matrix interaction plays a key role in the development of high-performance polymer/fiber composites. Flax fiber surface was modified by alkali treatment, corona discharge, maleic anhydride (MA) grafting and aminopropyltriethoxysilane treatment. Chemical structure of the treated fibers was characterized by FTIR, and the results revealed that alkali treatment removed hemicelluloses, lignin, waxes and oils. In addition, MA and silane reacted with the fiber to form –OCO–CH=CH–COOH and –(CH2)3–NH2 groups. Oil/water test was carried out on the treated fiber, and the results indicated that MA grafting and silane treatment changed the wettability of fiber from hydrophilic to hydrophobic. The morphology of fibers was observed by scanning electron microscope (SEM). It was obvious that the surface of alkali-treated fiber was very rough, and the surface of MA-grafted fiber and silane-treated fiber was covered by a coating layer. High toughness polylactic acid (PLA)/flax composites were fabricated by blending the modified fibers with PLA. The mechanical properties of PLA/flax composites were evaluated. The results showed that the impact strength and elongation-at-break of PLA/treated fiber composites were higher than those of PLA/untreated fiber composites. The compatibilizing mechanism between the fibers and PLA was discussed according to experimental phenomena and their corresponding results. Alkali treatment led to a rougher fiber surface, and formed more contacting points to enhance mechanical interlocking between PLA and fiber. The –OCO–CH=CH–COOH group of MA-grafted fiber and the –(CH2)3–NH2 group of silane-treated fiber acted as adhesive agents to hook the fiber to the matrix, and increased the fiber–matrix interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao YQ, Cheung HY, Lau KT, Xu L, Zhao DD, Li HL (2010) Silkworm silk/poly(lactic acid) biocomposites: dynamic mechanical, thermal and biodegradable properties. Polym Degrad Stab 95:1978–1987

    Article  CAS  Google Scholar 

  2. Blicblau AS, Coutta RSP, Sims A (1997) Novel composites utilizing raw wool and polyester resin. J Mater Sci Lett 16:1417–1419

    Article  CAS  Google Scholar 

  3. Corrales F, Vilaseca F, Llop M, Girones J, Mendez JA, Mutje P (2007) Chemical modification of jute fibers for the production of green-composites. J Hazard Mater 144:730–735

    Article  CAS  Google Scholar 

  4. Le Duigou A, Davies P, Baley C (2011) Environmental impact analysis of the production of flax fibres to be used as composite material reinforcement. J Biobased Mater Bioenergy 5:153–165

    Article  CAS  Google Scholar 

  5. Andersons J, Spārninš E, Joffe R, Wallström L (2005) Strength distribution of elementary flax fibres. Compos Sci Technol 65:693–702

    Article  CAS  Google Scholar 

  6. Summerscales J, Dissanayake NP, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1- Fibres as reinforcements. Compos A 41:1329–1335

    Article  CAS  Google Scholar 

  7. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784

    Article  CAS  Google Scholar 

  8. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  9. He HZ, Zhao Y, Wang KX, He X, Zhou HQ, Yao YD, Feng YH (2014) Modification of sisal fiber by in situ coating steam explosion and electromagnetic interference shielding effectiveness of sisal fiber/PP composites. Polym Compos 35:1038–1043

    Article  CAS  Google Scholar 

  10. Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos A 42:1189–1196

    Article  CAS  Google Scholar 

  11. Imre B, Keledi G, Renner K, Móczó J, Murariu M, Dubois P, Pukánszky B (2012) Adhesion and micromechanical deformation processes in PLA/CaSO4 composites. Carbohydr Polym 89:759–767

    Article  CAS  Google Scholar 

  12. Raj G, Balnois E, Baley C, Grohens Y (2009) Probing cellulose/polylactic acid interactions in model biocomposite by colloidal force microscopy. Colloids Surf A 352:47–55

    Article  CAS  Google Scholar 

  13. Sayeed MMA, Rawal A, Onal L, Karaduman Y (2014) Mechanical properties of surface modified jute fiber/polypropylene nonwoven composites. Polym Compos 35:1044–1050

    CAS  Google Scholar 

  14. Xu T, Tang Z, Zhu J (2012) Synthesis of polylactide-graft-glycidyl methacrylate graft copolymer and its application as a coupling agent in polylactide/bamboo flour biocomposites. J Appl Polym Sci 125:622–627

    Article  CAS  Google Scholar 

  15. Islam MS, Pickering KL, Foreman NJ (2010) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Compos A 41:596–603

    Article  CAS  Google Scholar 

  16. Li X, Tabil LG, Panigrahi S (2007) Chemical treatment of natural fibre for use in natural fibre-reinforced composites: a review. J Polym Environ 15:25–33

    Article  CAS  Google Scholar 

  17. Sawpan MA, Pickering KL, Fernyhough A (2011) Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos A 42:310–319

    Article  CAS  Google Scholar 

  18. Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos A 41:499–505

    Article  CAS  Google Scholar 

  19. Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A 43:1800–1808

    Article  CAS  Google Scholar 

  20. Keener TJ, Stuart RK, Brown TK (2004) Maleated coupling agents for natural fibre composites. Compos A 35:357–362

    Article  CAS  Google Scholar 

  21. Wang B, Panigrahi S, Tabil L, Crerar W (2007) Pre-treatment of flax fibres for use in rotationally molded biocomposites. J Reinf Plast Compos 26:447–463

    Article  CAS  Google Scholar 

  22. Li X, Panigrahi S, Tabil LG (2009) A study of flax fibre-reinforced polyethylene biocomposites. Appl Eng Agric 25:525–531

    Article  CAS  Google Scholar 

  23. Kaliaa S, Kaith BS, Kaur I (2009) Pretreatments of natural fibres and their application as reinforcing material in polymer composites: a review. Polym Eng Sci 49:1253–1272

    Article  CAS  Google Scholar 

  24. Paul SA, Oommen C, Joseph K, Mathew G, Thomas S (2010) The role of interface modification on thermal degradation and crystallization behavior of composites from commingled polypropylene fibre and banana fibre. Polym Compos 31:1113–1123

    CAS  Google Scholar 

  25. Mengeloglu F, Karakus K (2008) Thermal degradation, mechanical properties and morphology of wheat straw flour filled recycled thermoplastic composites. Sensors 8:500–519

    Article  CAS  Google Scholar 

  26. Jafari MA, Nikkhah A, Sadeghi AA, Chamani M (2007) The effect of Pleurotus spp. Fungi on chemical composition and in vitro digestibility of rice straw. Pak J Biol Sci 10:2460–2464

    Article  CAS  Google Scholar 

  27. Borchain KE, Carrot C, Jaziri M (2015) Untreated and alkali treated fibers from Alfa stem: effect of alkali treatment on structural, morphological and thermal features. Cellulose 22:1577–1589

    Article  CAS  Google Scholar 

  28. Mendes FM, Heikkilä E, Fonseca MB, Milagres AM, Ferraz A, Fardim P (2015) Topochemical characterization of sugar cane pretreated with alkaline sulfite. Ind Crop Prod 69:60–67

    Article  CAS  Google Scholar 

  29. Tan IA, Wu WH, Chan RA, Lim LLP (2012) Effect of mercerization and acetylation on properties of coconut fiber and its influence on modified bitumen. UNIMAS J Civil Eng 5:17–22

    Google Scholar 

  30. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  31. Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579

    Article  CAS  Google Scholar 

  32. Gregorova A, Hrabalova M, Wimmer R, Saake B, Altaner C (2009) Poly(lactide acid) composites reinforced with fibers obtained from different tissue types of Picea sitchensis. J Appl Polym Sci 114:2616–2623

    Article  CAS  Google Scholar 

  33. Paul SA, Joseph K, Mathew GG, Pothen LA, Thomas S (2010) Influence of polarity parameters on the mechanical properties of composites from polypropylene fibre and short banana fibre. Compos A 41:1380–1387

    Article  CAS  Google Scholar 

  34. De Rosa IM, Kenny JM, Maniruzzaman M, Moniruzzaman M, Monti M, Puglia D, Santulli C, Sarasini F (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol 71:246–254

    Article  CAS  Google Scholar 

  35. Dong S, Sapieha S, Schreiber HP (1993) Mechanical properties of corona-modified cellulose/polyethylene composites. Polym Eng Sci 33:343–346

    Article  CAS  Google Scholar 

  36. Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos Sci Technol 60:2857–2863

    Article  CAS  Google Scholar 

  37. Tronc E, Hernández-Escobar CA, Ibarra-Gómez R, Estrada-Monje A, Navarrete-Bolaños J, Zaragoza-Contreras EA (2007) Blue agave fiber esterification for the reinforcement of thermoplastic composites. Carbohydr Polym 67:245–255

    Article  CAS  Google Scholar 

  38. Jandas PJ, Mohanty S, Nayak SK (2012) Renewable resource-based biocomposites of various surface treated banana fiber and poly lactic acid: characterization and biodegradability. J Polym Environ 20:583–595

    Article  CAS  Google Scholar 

  39. Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80:1013–1020

    Article  CAS  Google Scholar 

  40. Hassan ML, Rowell RM, Fadl NA, Yacoub SF, Christainse AW (2000) Thermoplasticization of bagasse. I. Preparation and characterization of esterified bagasse fiber. J Appl Polym Sci 76:561–574

    Article  CAS  Google Scholar 

  41. Hassan ML, Rowell RM, Fadl NA, Yacoub SF, Christainsen AW (2000) Thermoplasticization of bagasse. II. Dimensional stability and mechanical properties of esterified bagasse composite. J Appl Polym Sci 76:575–586

    Article  CAS  Google Scholar 

  42. Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci Technol 35:191–201

    Article  CAS  Google Scholar 

  43. Alvarez VA, Vázquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos A 37:1672–1680

    Article  CAS  Google Scholar 

  44. Le Moigne N, Longerey M, Taulemesse JM, Bénézet JC, Bergeret A (2014) Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments. Ind Crop Prod 52:481–494

    Article  CAS  Google Scholar 

  45. Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos A 42:888–895

    Article  CAS  Google Scholar 

  46. Bisanda ETN (2000) The effect of alkali treatment on the adhesion characteristics of Sisal fibres. Appl Compos Mater 7:331–339

    Article  CAS  Google Scholar 

  47. Zou H, Wang L, Gan H, Yi C (2012) Effect of fiber surface treatments on the properties of short sisal fiber/poly(lactic acid) biocomposites. Polym Compos 33:1659–1666

    Article  CAS  Google Scholar 

  48. Jandas PJ, Mohanty S, Nayak SK (2013) Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. J Clean Prod 52:392–401

    Article  CAS  Google Scholar 

  49. Raj G, Balnois E, Helias MA, Baley C, Grohens Y (2012) Measuring adhesion forces between model polysaccharide films and PLA bead to mimic molecular interactions in flax/PLA biocomposite. J Mater Sci 47:2175–2181

    Article  CAS  Google Scholar 

  50. Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos A 39:1632–1637

    Article  CAS  Google Scholar 

  51. Zhuang RC, Burghardt T, Plonka R, Liu JW, Mäder E (2010) Affecting glass fibre surfaces and composite properties by two stage sizing application. eXPRESS. Polym Lett 4:798–808

    Article  CAS  Google Scholar 

  52. Dey M, Deitzel JM, Gillespie JW, Schweiger S (2014) Influence of sizing formulations on glass/epoxy interphase properties. Compos A 63:59–67

    Article  CAS  Google Scholar 

  53. Le Troëdec M, Rachini A, Peyratout C, Rossignol S, Max E, Kaftan O, Fery A, Smith A (2011) Influence of chemical treatments on adhesion properties of hemp fibres. J Colloid Interface Sci 356:303–310

    Article  CAS  Google Scholar 

  54. Petinakis E, Yu L, Edward G, Dean K, Liu H, Scully AD (2009) Effect of matrix-particle interfacial adhesion on the mechanical properties of poly(lactic acid)/wood-flour micro-composites. J Polym Environ 17:83–94

    Article  CAS  Google Scholar 

  55. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos A 40:469–475

    Article  CAS  Google Scholar 

  56. Kaiser MR, Anuar HB, Samat NB, Razak SBA (2013) Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran Polym J 22:123–131

    Article  CAS  Google Scholar 

  57. Majhi SK, Nayak SK, Mohanty S, Unnikrishnan L (2010) Mechanical and fracture behavior of banana fiber reinforced polylactic acid biocomposites. Int J Plast Technol 14:57–75

    Article  CAS  Google Scholar 

  58. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos A 40:404–412

    Article  CAS  Google Scholar 

  59. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432

    Article  CAS  Google Scholar 

  60. Ho MP, Wang H, Lau KT, Lee JH, Hui D (2012) Interfacial bonding and degumming effects on silk fibre/polymer biocomposites. Compos B 43:2801–2812

    Article  CAS  Google Scholar 

  61. Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos B 42:1648–1656

    Article  CAS  Google Scholar 

  62. Oksman K (1996) Improved interaction between wood and polymers in wood/polymer composites synthetic. Wood Sci Technol 30:197–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Liu, W., Zhou, L. et al. Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites. Iran Polym J 25, 25–35 (2016). https://doi.org/10.1007/s13726-015-0395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0395-3

Keywords

Navigation