Skip to main content
Log in

Cancer drug target identification and node-level analysis of the network of MAPK pathways

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinase (MAPK) pathways extensively studied in cancer and governing intertwined biological process challenges to identify the efficient drug target strategy. Cross-talks among ERK1/2, ERK5, JNK, and p38 amplify signaling flow and lead to the construction of the network of MAPK pathways. A topological analysis reveals that the network exponentially fits the degree distributions and targeting hub proteins causes detrimental to the network. We aim to identify novel drug targets controlling pathological consequences in the signaling flow than killing the cell. Intra-pathway node inhibition causes less perturbation in the network. We set the strategy of considering low degree (< 5) and intra-pathway nodes free from the intertwined regulations as preliminary isolation. Furthermore, nodes with less functionally diverse and significantly contributing to the cancer are isolated using GO annotations. Elements in the network of the MAPK pathways catalogued and analyzed using protein types, subcellular localization, cancerous/non-cancerous nature, target/non-targeted status, and inter- and intra-pathway properties to illustrate their roles in the complex mechanism of cancer. Over a decade of kinases as promising drug targets for cancer, other signal transduction supporting proteins also found to be equally competent. However, kinases interact with various other proteins to gain the higher degree. Similarly, translocation proteins interact with their partners in diverse location to gain the degree and functionally vital. Inhibition of kinases and translocation proteins may draw unexpected side effects. Non-targeted nodes Mos, PAC1, MKP4, 4EBP1, LAD, M3/6, RNPK, and SRF identified as cancer drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157

    Article  Google Scholar 

  • Aksam VKMD, Chandrasekaran VM, Pandurangan S (2017) Hub nodes in the network of human mitogen-activated protein kinase (MAPK) pathways: characteristics and potential as drug targets. Inform Med Unlocked 9:173–180

    Article  Google Scholar 

  • Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  Google Scholar 

  • Amaral LAN, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci 97:11149–11152

    Article  Google Scholar 

  • An O, Pendino V, D’Antonio M, Ratti E, Gentilini M, Ciccarelli FD (2014) NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes. Database 2014:bau015

    Article  Google Scholar 

  • Antal MA, Bode C, Csermely P (2009) Perturbation waves in proteins and protein networks: applications of percolation and game theories in signaling and drug design. Curr Protein Pept Sci 10:161–172

    Article  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  Google Scholar 

  • Barabási A-L, Gulbahce N, Loscalzo J (2010) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:nrg2918

    Google Scholar 

  • Behar M, Dohlman HG, Elston TC (2007) Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks. Proc Natl Acad Sci 104:16146–16151

    Article  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science (80-) 283:381–387

    Article  Google Scholar 

  • Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  Google Scholar 

  • Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R et al (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62:6997–7000

    Google Scholar 

  • Bunnage ME, Gilbert AM, Jones LH, Hett EC (2015) Know your target, know your molecule. Nat Chem Biol 11:368–372

    Article  Google Scholar 

  • Butt TR, Karathanasi SK (1995) Transcription factors as drug targets: opportunities for therapeutic selectivity. Gene Expr 4:319–336

    Google Scholar 

  • Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83

    Article  Google Scholar 

  • Chen Y-R, Shrivastava A, Tan T-H (2001) Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate. Oncogene 20:367

    Article  Google Scholar 

  • Cohen P (2010) Guidelines for the effective use of chemical inhibitors of protein function to understand their roles in cell regulation. Biochem J 425:53–54

    Article  Google Scholar 

  • Cornelius SP, Kath WL, Motter AE (2011) Controlling complex networks with compensatory perturbations. arXiv Preprint arXiv:11053726

  • Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408

    Article  Google Scholar 

  • Darnell JE (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2:740–749

    Article  Google Scholar 

  • Dejgaard K, Leffers H, Rasmussen HH, Madsen P, Kruse TA, Gesser B et al (1994) Identification, molecular cloning, expression and chromosome mapping of a family of transformation upregulated hnRNP-K proteins derived by alternative splicing. J Mol Biol 236:33–48

    Article  Google Scholar 

  • Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    Article  Google Scholar 

  • Dutkowski J, Kramer M, Surma MA, Balakrishnan R, Cherry JM, Krogan NJ et al (2013) A gene ontology inferred from molecular networks. Nat Biotechnol 31:38–45

    Article  Google Scholar 

  • English JM, Cobb MH (2002) Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 23:40–45

    Article  Google Scholar 

  • Erenpreisa J, Cragg MS (2010) MOS, aneuploidy and the ploidy cycle of cancer cells. Oncogene 29:5447–5451

    Article  Google Scholar 

  • Fliri AF, Loging WT, Volkmann RA (2010) Cause-effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci 31:547–555

    Article  Google Scholar 

  • Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H et al (2014) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811

    Article  Google Scholar 

  • Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2011) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    Article  Google Scholar 

  • Gibbs JB (2000) Mechanism-based target identification and drug discovery in cancer research. Science (80-) 287:1969–1973

    Article  Google Scholar 

  • Gong X, Wu R, Zhang Y, Zhao W, Cheng L, Gu Y et al (2010) Extracting consistent knowledge from highly inconsistent cancer gene data sources. BMC Bioinform 11:76

    Article  Google Scholar 

  • Gorgoulis VG, Zacharatos P, Mariatos G, Liloglou T, Kokotas S, Kastrinakis N et al (2001) Deregulated expression of c-mos in non-small cell lung carcinomas: relationship with p53 status, genomic instability, and tumor kinetics. Cancer Res 61:538–549

    Google Scholar 

  • Gough NR (2011) Focus issue: recruiting players for a game of ERK. Sci Signal 4:9

    Google Scholar 

  • Grant SK (2009) Therapeutic protein kinase inhibitors. Cell Mol Life Sci 66:1163–1177

    Article  Google Scholar 

  • Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC et al (2013) DGIdb: mining the druggable genome. Nat Methods 10:1209–1210

    Article  Google Scholar 

  • Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4:361–370

    Article  Google Scholar 

  • He R, Yu Z, Zhang R, Zhang Z (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35:1227–1246

    Article  Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  Google Scholar 

  • Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354

    Article  Google Scholar 

  • Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5:821–834

    Article  Google Scholar 

  • Inoue A, Sawata SY, Taira K, Wadhwa R (2007) Loss-of-function screening by randomized intracellular antibodies: identification of hnRNP-K as a potential target for metastasis. Proc Natl Acad Sci 104:8983–8988

    Article  Google Scholar 

  • Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22:2291–2297

    Article  Google Scholar 

  • Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132

    Article  Google Scholar 

  • Karamouzis MV, Papavassiliou AG (2011) Transcription factor networks as targets for therapeutic intervention of cancer: the breast cancer paradigm. Mol Med 17:1133

    Article  Google Scholar 

  • Kitano H (2004a) Opinion: cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227

    Article  Google Scholar 

  • Kitano H (2004b) Biological robustness. Nat Rev Genet 5:826–837

    Article  Google Scholar 

  • Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6:202

    Article  Google Scholar 

  • Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A et al (2010) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041

    Article  Google Scholar 

  • Korcsmáros T, Farkas IJ, Szalay MS, Rovó P, Fazekas D, Spiró Z et al (2010) Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics 26:2042–2050

    Article  Google Scholar 

  • Levitzki A, Klein S (2010) Signal transduction therapy of cancer. Mol Aspects Med 31:287–329

    Article  Google Scholar 

  • Lewis TS, Hunt JB, Aveline LD, Jonscher KR, Louie DF, Yeh JM et al (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol Cell 6:1343–1354

    Article  Google Scholar 

  • Lewitzky M, Simister PC, Feller SM (2012) Beyond ‘furballs’ and ‘dumpling soups’—towards a molecular architecture of signaling complexes and networks. FEBS Lett 586:2740–2750

    Article  Google Scholar 

  • Manning AM, Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2:554–565

    Article  Google Scholar 

  • McConnell JL, Wadzinski BE (2009) Targeting protein serine/threonine phosphatases for drug development. Mol Pharmacol 75:1249–1261

    Article  Google Scholar 

  • Mees C, Nemunaitis J, Senzer N (2009) Transcription factors: their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther 16:103–112

    Article  Google Scholar 

  • Muda M, Boschert U, Smith A, Antonsson B, Gillieron C, Chabert C et al (1997) Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. J Biol Chem 272:5141–5151

    Article  Google Scholar 

  • Nakamura K, Johnson GL (2003) PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J Biol Chem 278:36989–36992

    Article  Google Scholar 

  • Nguyen LK, Matallanas D, Croucher DR, von Kriegsheim A, Kholodenko BN (2013) Signalling by protein phosphatases and drug development: a systems-centred view. FEBS J 280:751–765

    Article  Google Scholar 

  • Patterson KI, Brummer T, O’brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489

    Article  Google Scholar 

  • Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science (80-) 278:2075–2080

    Article  Google Scholar 

  • Pearson MA, Fabbro D (2004) Targeting protein kinases in cancer therapy: a success? Expert Rev Anticancer Ther 4:1113–1124

    Article  Google Scholar 

  • Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta (BBA) Mol Cell Res 1813:1619–1633

    Article  Google Scholar 

  • Prasad CK, Mahadevan M, MacNicol MC, MacNicol AM (2008) Mos 3′ UTR regulatory differences underlie species-specific temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational recruitment during oocyte maturation. Mol Reprod Dev 75:1258–1268

    Article  Google Scholar 

  • Qin C, Zhang C, Zhu F, Xu F, Chen SY, Zhang P et al (2013) Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res 42:D1118–D1123

    Article  Google Scholar 

  • Rask-Andersen M, Almén MS, Schiöth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590

    Article  Google Scholar 

  • Roberts PJ, Der CJ (2007) Targeting the Raf–MEK–ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310

    Article  Google Scholar 

  • Rohan PJ, Davis P, Moskaluk CA, Kearns M, Krutzsch H, Siebenlist U et al (1993) PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science 259:1763 (YORK THEN WASHINGTON-)

    Article  Google Scholar 

  • Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947

    Article  Google Scholar 

  • Simpson JC, Pepperkok R (2006) The subcellular localization of the mammalian proteome comes a fraction closer. Genome Biol 7:222

    Article  Google Scholar 

  • Smith LM, Wise SC, Hendricks DT, Sabichi AL, Bos T, Reddy P et al (1999) cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Oncogene 18:6063

    Article  Google Scholar 

  • Tsukiyama-Kohara K, Vidal SM, Gingras A-C, Glover TW, Hanash SM, Heng H et al (1996) Tissue distribution, genomic structure, and chromosome mapping of mouse and human eukaryotic initiation factor 4E-binding proteins 1 and 2. Genomics 38:353–363

    Article  Google Scholar 

  • Wagner EF, Nebreda ÁR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549

    Article  Google Scholar 

  • Ward Y, Gupta S, Jensen P, Wartmann M, Davis RJ, Kelly K (1994) Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 367:651–654

    Article  Google Scholar 

  • Weinberg RA (1996) How cancer arises. Sci Am 275:62–71

    Article  Google Scholar 

  • Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417

    Article  Google Scholar 

  • Wiley HS (2014) Open questions: the disrupted circuitry of the cancer cell. BMC Biol 12:88

    Article  Google Scholar 

  • Yao Z, Seger R (2009) The ERK signaling cascade—views from different subcellular compartments. Biofactors 35:407–416

    Article  Google Scholar 

  • Yee D (2010) Adaptor proteins as targets for cancer prevention. Cancer Prev Res 3:263–265

    Article  Google Scholar 

  • Yong H-Y, Koh M-S, Moon A (2009) The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 18:1893–1905

    Article  Google Scholar 

  • Yu Q, Huang J-F (2012) The analysis of the druggable families based on topological features in the protein–protein interaction network. Lett Drug Des Discov 9:426–430

    Article  Google Scholar 

  • Zehorai E, Yao Z, Plotnikov A, Seger R (2010) The subcellular localization of MEK and ERK—a novel nuclear translocation signal (NTS) paves a way to the nucleus. Mol Cell Endocrinol 314:213–220

    Article  Google Scholar 

  • Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaramurthy Pandurangan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksam, V.K.M., Chandrasekaran, V.M. & Pandurangan, S. Cancer drug target identification and node-level analysis of the network of MAPK pathways. Netw Model Anal Health Inform Bioinforma 7, 4 (2018). https://doi.org/10.1007/s13721-018-0165-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-018-0165-1

Keywords

Navigation