Skip to main content

Advertisement

Log in

Aspects of Cardiometabolic Risk in Women with Polycystic Ovary Syndrome

  • Metabolism (R Pasquali, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Women with polycystic ovary syndrome (PCOS), the most common endocrine disorder among women of reproductive age, exhibit an adverse cardiovascular risk profile characteristic of the cardiometabolic syndrome. These women, compared with age- and body mass index-matched women without PCOS, appear to present a higher risk of insulin resistance, glucose intolerance, and dyslipidemia, and possibly a higher rate of type 2 diabetes mellitus and cardiovascular disease. However, despite the presence of cardiovascular risk factors and increased surrogate markers of cardiovascular disease, it is unclear whether they have accelerated atherosclerosis and greater mortality, the latter mainly because of a lack of endpoint studies. This article addresses, summarizes, and discusses salient data from the existing literature, including gaps and uncertainties, aspects, and mechanisms related to the spectrum of adverse cardiometabolic profile factors in women with PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polysystic ovary syndrome. Clin Epidemiol. 2013;6:1–13. An essential review on epidemiology, diagnosis and management of PCOS. The prevalence of PCOS varies depending on which criteria are used to make the diagnosis. Proper diagnosis and management of PCOS is essential to address patient concerns but also to prevent future metabolic, endocrine, psychiatric, and cardiovascular complications.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Diamanti-Kandarakis E, Kouli CR, Bergiele AT, et al. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab. 1999;84(11):4006–11.

    Article  CAS  PubMed  Google Scholar 

  3. Carmina E, Campagna AM, Lobo RA. Emergence of ovulatory cycles with aging in women with polycystic ovary syndrome (PCOS) alters the trajectory of cardiovascular and metabolic risk factors. Hum Reprod. 2013;28:2245–52.

    Article  CAS  PubMed  Google Scholar 

  4. Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome. In: Givens JHF, Merriman G, editors. The polycystic ovary syndrome. Cambridge: Blackwell Scientific; 1992. p. 377–84.

    Google Scholar 

  5. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25.

    Article  Google Scholar 

  6. Azziz R, Carmina E, Dewailly D, et al. Position statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab. 2006;91(11):4237–45.

    Article  CAS  PubMed  Google Scholar 

  7. Randeva HS, Tan BK, Weickert MO, et al. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr Rev. 2012;33(5):812–41. Great review on the same topic.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Livadas S, Diamanti-Kandarakis E. Polycystic ovary syndrome: definitions, phenotypes and diagnostic approach. Front Horm Res. 2013;40:1–21. Very useful information regarding grey zones in assessing anovulation, hyperandrogenism, ovarian morphology and the difficulties in differential diagnosis of PCOS. Furthermore, the lack of substantial data characterizing metabolic/hormonal profile and the potential cardiovascular risk in newer PCOS phenotypes, as well as the absence of longitudinal data questioning a possible shift from one phenotype to another are underlined.

    Article  CAS  PubMed  Google Scholar 

  9. Diamanti-Kandarakis E. Role of obesity and adiposity in polycystic ovary syndrome. Int J Obes (Lond). 2007;31 Suppl 2:S8–13. discussion S31-2.

    Article  Google Scholar 

  10. Lim SS, Davies MJ, Norman RJ, et al. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618–37.

    Article  CAS  PubMed  Google Scholar 

  11. Androulakis II, Kandaraki E, Christakou C, et al. Visceral adiposity index (VAI) is related to the severity of anovulation and other clinical features in women with polycystic ovary syndrome. Clin Endocrinol (Oxf). 2014 Mar 7.

  12. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030. This article summarizes the state of the science regarding the association between insulin resistance and PCOS. The association between insulin resistance and PCOS has led to the discovery that insulin is an important reproductive hormone and that insulin signaling in the CNS is critical for ovulation. Androgens also have important effects on insulin sensitivity and secretion.

    Article  CAS  PubMed  Google Scholar 

  13. Kelly CJ, Speirs A, Gould GW, et al. Altered vascular function in young women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(2):742–6.

    Article  CAS  PubMed  Google Scholar 

  14. Legro RS, Kunselman AR, Dodson WC, et al. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab. 1999;84(1):165–9.

    CAS  PubMed  Google Scholar 

  15. Trakakis E, Basios G, Peppa M, et al. The prevalence of glucose metabolism abnormalities in Greek women with polycystic ovary syndrome. Gynecol Endocrinol. 2012;28(11):867–70.

    Article  CAS  PubMed  Google Scholar 

  16. Diamanti-Kandarakis E, Papailiou J, Palimeri S. Hyperandrogenemia: pathophysiology and its role in ovulatory dysfunction in PCOS. Pediatr Endocrinol Rev. 2006;3 Suppl 1:198–204.

    PubMed  Google Scholar 

  17. Livadas S, Pappas C, Karachalios A, et al. Prevalence and impact of hyperandrogenemia in 1218 women with polycystic ovary syndrome. Endocrine. 2014 Apr 22.

  18. Lovejoy JC, Bray GA, Bourgeois MO, et al. Exogenous androgens influence body composition and regional body fat distribution in obese postmenopausal women—a clinical research center study. J Clin Endocrinol Metab. 1996;81(6):2198–203.

    CAS  PubMed  Google Scholar 

  19. Dunaif A, Green G, Futterweit W, et al. Suppression of hyperandrogenism does not improve peripheral or hepatic insulin resistance in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1990;70(3):699–704.

    Article  CAS  PubMed  Google Scholar 

  20. Diamanti-Kandarakis E, Mitrakou A, Hennes MM, et al. Insulin sensitivity and antiandrogenic therapy in women with polycystic ovary syndrome. Metabolism. 1995;44(4):525–31.

    Article  CAS  PubMed  Google Scholar 

  21. Elkind-Hirsch KE, Valdes CT, Malinak LR. Insulin resistance improves in hyperandrogenic women treated with Lupron. Fertil Steril. 1993;60(4):634–41.

    CAS  PubMed  Google Scholar 

  22. Moghetti P, Tosi F, Castello R, et al. The insulin resistance in women with hyperandrogenism is partially reversed by antiandrogen treatment: evidence that androgens impair insulin action in women. J Clin Endocrinol Metab. 1996;81(3):952–60.

    CAS  PubMed  Google Scholar 

  23. Cagnacci A, Paoletti AM, Arangino S, et al. Effect of ovarian suppression on glucose metabolism of young lean women with and without ovarian hyperandrogenism. Hum Reprod. 1999;14(4):893–7.

    Article  CAS  PubMed  Google Scholar 

  24. Messer C, Boston R, Leroith D, et al. Pancreatic β-cell dysfunction in polycystic ovary syndrome: the role of metformin. Endocr Pract. 2012;18(5):685–93.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Dunaif A, Finegood DT. Beta-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1996;81(3):942–7.

    CAS  PubMed  Google Scholar 

  26. Arslanian SA, Lewy VD, Danadian K. Glucose intolerance in obese adolescents with polycystic ovary syndrome: roles of insulin resistance and beta-cell dysfunction and risk of cardiovascular disease. J Clin Endocrinol Metab. 2001;86(1):66–71.

    CAS  PubMed  Google Scholar 

  27. Ehrmann DA, Sturis J, Byrne MM, et al. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of noninsulin-dependent diabetes mellitus. J Clin Invest. 1995;96(1):520–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Holte J, Bergh T, Berne C, et al. Enhanced early insulin response to glucose in relation to insulin resistance in women with polycystic ovary syndrome and normal glucose tolerance. J Clin Endocrinol Metab. 1994;78(5):1052–8.

    CAS  PubMed  Google Scholar 

  29. Holte J, Bergh T, Berne C, Wide L, Lithell H. Restored insulin sensitivity but persistently increased early insulin secretion after weight loss in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1995;80(9):2586–93.

    CAS  PubMed  Google Scholar 

  30. Morin-Papunen LC, Vauhkonen I, Koivunen RM, et al. Insulin sensitivity, insulin secretion, and metabolic and hormonal parameters in healthy women and women with polycystic ovarian syndrome. Hum Reprod. 2000;15(6):1266–74.

    Article  CAS  PubMed  Google Scholar 

  31. Gennarelli G, Rovei V, Novi RF, et al. Preserved insulin sensitivity and {beta}-cell activity, but decreased glucose effectiveness in normal-weight women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90(6):3381–6.

    Article  CAS  PubMed  Google Scholar 

  32. Svendsen PF, Nilas L, Norgaard K, et al. Obesity, body composition and metabolic disturbances in polycystic ovary syndrome. Hum Reprod. 2008;23(9):2113–21.

    Article  CAS  PubMed  Google Scholar 

  33. Glueck CJ, Morrison JA, Goldenberg N, et al. Coronary heart disease risk factors in adult premenopausal white women with polycystic ovary syndrome compared with a healthy female population. Metabolism. 2009;58(5):714–21.

    Article  CAS  PubMed  Google Scholar 

  34. Yildirim B, Sabir N, Kaleli B. Relation of intra-abdominal fat distribution to metabolic disorders in nonobese patients with polycystic ovary syndrome. Fertil Steril. 2003;79(6):1358–64.

    Article  PubMed  Google Scholar 

  35. Wild RA. Polycystic ovary syndrome: a risk for coronary artery disease? Am J Obstet Gynecol. 2002;186(1):35–43.

    Article  PubMed  Google Scholar 

  36. Diamanti-Kandarakis E, Papavassiliou AG, Kandarakis SA, et al. Pathophysiology and types of dyslipidemia in PCOS. Trends Endocrinol Metab. 2007;18(7):280–5.

    Article  CAS  PubMed  Google Scholar 

  37. Wild RA, Rizzo M, Clifton S, et al. Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. Fertil Steril. 2011;95(3):1073–9.

    Article  CAS  PubMed  Google Scholar 

  38. Essah PA, Nestler JE, Carmina E. Differences in dyslipidemia between American and Italian women with polycystic ovary syndrome. J Endocrinol Investig. 2008;31(1):35–41.

    Article  CAS  Google Scholar 

  39. Wild RA, Carmina E, Diamanti-Kandarakis E, et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J Clin Endocrinol Metab. 2010;95(5):2038–49.

    Article  CAS  PubMed  Google Scholar 

  40. Bentley-Lewis R, Seely E, Dunaif A. Ovarian hypertension: polycystic ovary syndrome. Endocrinol Metab Clin N Am. 2011;40(2):433–49.

    Article  CAS  Google Scholar 

  41. Elting MW, Korsen TJ, Bezemer PD, et al. Prevalence of diabetes mellitus, hypertension and cardiac complaints in a follow-up study of a Dutch PCOS population. Hum Reprod. 2001;16(3):556–60.

    Article  CAS  PubMed  Google Scholar 

  42. Cibula D, Cifkova R, Fanta M, et al. Increased risk of non-insulin dependent diabetes mellitus, arterial hypertension and coronary artery disease in perimenopausal women with a history of the polycystic ovary syndrome. Hum Reprod. 2000;15(4):785–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wild S, Pierpoint T, McKeigue P, et al. Cardiovascular disease in women with polycystic ovary syndrome at long-term follow-up: a retrospective cohort study. Clin Endocrinol (Oxf). 2000;52(5):595–600.

    Article  CAS  Google Scholar 

  44. Wild S, Pierpoint T, Jacobs H, et al. Long-term consequences of polycystic ovary syndrome: results of a 31 year follow-up study. Hum Fertil (Camb). 2000;3(2):101–5.

    Article  Google Scholar 

  45. Holte J, Gennarelli G, Berne C, et al. Elevated ambulatory day-time blood pressure in women with polycystic ovary syndrome: a sign of a pre-hypertensive state? Hum Reprod. 1996;11(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  46. Dahlgren E, Johansson S, Lindstedt G, et al. Women with polycystic ovary syndrome wedge resected in 1956 to 1965: a longterm follow-up focusing on natural history and circulating hormones. Fertil Steril. 1992;57(3):505–13.

    CAS  PubMed  Google Scholar 

  47. Lo JC, Feigenbaum SL, Yang J, et al. Epidemiology and adverse cardiovascular risk profile of diagnosed polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91(4):1357–63.

    Article  CAS  PubMed  Google Scholar 

  48. Christakou CD, Diamanti-Kandarakis E. Role of androgen excess on metabolic aberrations and cardiovascular risk in women with polycystic ovary syndrome. Women’s Health (Lond Engl). 2008;4(6):583–94.

    Article  CAS  Google Scholar 

  49. Shaw LJ, Bairey Merz CN, Azziz R, et al. Postmenopausal women with a history of irregular menses and elevated androgen measurements at high risk for worsening cardiovascular event-free survival: results from the national institutes of health—national heart, lung, and blood institute sponsored women’s ischemia syndrome evaluation. J Clin Endocrinol Metab. 2008;93(4):1276–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Orio Jr F, Palomba S, Cascella T, et al. Early impairment of endothelial structure and function in young normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89(9):4588–93.

    Article  CAS  PubMed  Google Scholar 

  51. Kelly CC, Lyall H, Petrie JR, et al. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001;86(6):2453–5.

    Article  CAS  PubMed  Google Scholar 

  52. Koiou E, Tziomalos K, Dinas K, et al. Plasma plasminogen activator inhibitor-1 levels in the different phenotypes of the polycystic ovary syndrome. Endocr J. 2012;59(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  53. Diamanti-Kandarakis E, Spina G, Kouli C, et al. Increased endothelin-1 levels in women with polycystic ovary syndrome and the beneficial effect of metformin therapy. J Clin Endocrinol Metab. 2001;86(10):4666–73.

    Article  CAS  PubMed  Google Scholar 

  54. Diamanti-Kandarakis E, Paterakis T, Alexandraki K, et al. Indices of low-grade chronic inflammation in polycystic ovary syndrome and the beneficial effect of metformin. Hum Reprod. 2006;21(6):1426–31.

    Article  CAS  PubMed  Google Scholar 

  55. Boutzios G, Livadas S, Piperi C, et al. Polycystic ovary syndrome offspring display increased oxidative stress markers comparable to gestational diabetes offspring. Fertil Steril. 2013;99(3):943–50.

    Article  CAS  PubMed  Google Scholar 

  56. Diamanti-Kandarakis E, Piperi C, Kalofoutis A, et al. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol (Oxf). 2005;62(1):37–43.

    Article  CAS  Google Scholar 

  57. Diamanti-Kandarakis E, Katsikis I, Piperi C, et al. Increased serum advanced glycation end-products is a distinct finding in lean women with polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf). 2008;69(4):634–41.

    Article  CAS  Google Scholar 

  58. Christakou C, Economou F, Livadas S, et al. Strong and positive association of endothelin-1 with AGEs in PCOS: a causal relationship or a bystander? Hormones (Athens). 2011;10:292–7.

    Article  Google Scholar 

  59. Diamanti-Kandarakis E, Piperi C, Korkolopoulou P, Kandaraki E, et al. Accumulation of dietary glycotoxins in the reproductive system of normal female rats. J Mol Med (Berlin). 2007;85(12):1413–20.

    Article  CAS  Google Scholar 

  60. Christakou C, Diamanti-Kandarakis E. Structural, biochemical and non-traditional cardiovascular risk markers in PCOS. Curr Pharm Des. 2013;19(32):5764–74. The combination of anovulation and hyperandrogenism signifies the classic form of PCOS which displays the adverse metabolic phenotype of the syndrome. This phenotype includes visceral obesity and insulin resistance as well as a constellation of other traditional cardiovascular risk factors, mainly low grade inflammation, disturbances of glucose metabolism and dyslipidemia. The resultant increased risk for cardiovascular disease may affect not only obese but also lean women with classic PCOS. The mechanisms underlying the increased cardiovascular risk in the context of PCOS may include not only metabolic aberrations, but also hormonal factors, in particular hyperandrogenemia.

    Article  CAS  PubMed  Google Scholar 

  61. Chang AY, Ayers C, Minhajuddin A, et al. Polycystic ovarian syndrome and subclinical atherosclerosis among women of reproductive age in the Dallas heart study. Clin Endocrinol (Oxf). 2011;74(1):89–96.

    Article  CAS  Google Scholar 

  62. Shroff R, Kerchner A, Maifeld M, et al. Young obese women with polycystic ovary syndrome have evidence of early coronary atherosclerosis. J Clin Endocrinol Metab. 2007;92(12):4609–14.

    Article  CAS  PubMed  Google Scholar 

  63. Allameh Z, Rouholamin S, Adibi A, et al. Does carotid intima-media thickness have relationship with polycystic ovary syndrome? Int J Prev Med. 2013;4(11):1266–70.

    PubMed Central  PubMed  Google Scholar 

  64. Meyer ML, Malek AM, Wild RA, et al. Carotid artery intima-media thickness in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18:112–26.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Arad Y, Spadaro LA, Goodman K, et al. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol. 2000;36:1253–60.

    Article  CAS  PubMed  Google Scholar 

  66. Doneen AL, Bale BF. Carotid intima-media thickness testing as an asymptomatic cardiovascular disease identifier and method for making therapeutic decisions. Postgrad Med. 2013;125(2):108–23.

    Article  PubMed  Google Scholar 

  67. Alexander CJ, Tangchitnob EP, Lepor NE. Polycystic ovary syndrome: a major unrecognized cardiovascular risk factor in women. Rev Obstet Gynecol. 2009;2(4):232–9.

    PubMed Central  PubMed  Google Scholar 

  68. Domecq JP, Prutsky G, Mullan RJ, et al. Lifestyle modification programs in polycystic ovary syndrome: systematic review and meta-analysis. J Clin Endocrinol Metab. 2013;98(12):4655–63.

    Article  CAS  PubMed  Google Scholar 

  69. Diamanti-Kandarakis E, Christakou C, Marinakis E. Phenotypes and environmental factors: their influence in PCOS. Curr Pharm Des. 2012;18(3):270–82.

    Article  CAS  PubMed  Google Scholar 

  70. Case problem: dietary recommendations to combat obesity, insulin resistance, and other concerns related to polycystic ovary syndrome. J Am Diet Assoc. 2000;100(8):955–7; discussion 957–60.

  71. Moran LJ, Hutchison SK, Norman RJ, et al. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2011;6(7), CD007506.

    Google Scholar 

  72. Tantalaki E, Piperi C, Livadas S, et al. Impact of dietary modification of advanced glycation end products (AGEs) on the hormonal and metabolic profile of women with polycystic ovary syndrome (PCOS). Hormones (Athens). 2014;13(1):65–73.

    Google Scholar 

  73. Bargiota A, Diamanti-Kandarakis E. The effects of old, new and emerging medicines on metabolic aberrations in PCOS. Ther Adv Endocrinol Metab. 2012;3(1):27–47. Multiple metabolic aberrations, such as insulin resistance (IR) and hyperinsulinaemia, high incidence of impaired glucose tolerance, visceral obesity, inflammation and endothelial dysfunction, hypertension and dyslipidemia are associated with PCOS. Current therapeutic management of PCOS has incorporated new treatments resulting from the better understanding of the pathophysiology of the syndrome.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Wehr E, Pilz S, Schweighofer N, et al. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur J Endocrinol. 2009;161(4):575–82.

    Article  CAS  PubMed  Google Scholar 

  75. Selimoglu H, Duran C, Kiyici S, et al. The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Investig. 2010;33(4):234–8.

    Article  CAS  Google Scholar 

  76. Kotsa K, Yavropoulou MP, Anastasiou O, et al. Role of vitamin D treatment in glucose metabolism in polycystic ovary syndrome. Fertil Steril. 2009;92(3):1053–8.

    Article  CAS  PubMed  Google Scholar 

  77. Wiegratz I, Kuhl H. Long-cycle treatment with oral contraceptives. Drugs. 2004;64(21):2447–62.

    Article  CAS  PubMed  Google Scholar 

  78. Kahn JA, Gordon CM. Polycystic ovary syndrome. Adolesc Med. 1999;10(2):321–36.

    CAS  PubMed  Google Scholar 

  79. Nader S, Riad-Gabriel MG, Saad MF. The effect of a desogestrel-containing oral contraceptive on glucose tolerance and leptin concentrations in hyperandrogenic women. J Clin Endocrinol Metab. 1997;82(9):3074–7.

    CAS  PubMed  Google Scholar 

  80. Cagnacci A, Paoletti AM, Renzi A, et al. Glucose metabolism and insulin resistance in women with polycystic ovary syndrome during therapy with oral contraceptives containing cyproterone acetate or desogestrel. J Clin Endocrinol Metab. 2003;88(8):3621–5.

    Article  CAS  PubMed  Google Scholar 

  81. Nader S, Diamanti-Kandarakis E. Polycystic ovary syndrome, oral contraceptives and metabolic issues: new perspectives and a unifying hypothesis. Hum Reprod. 2007;22(2):317–22.

    Article  CAS  PubMed  Google Scholar 

  82. Cibula D, Fanta M, Vrbikova J, et al. The effect of combination therapy with metformin and combined oral contraceptives (COC) versus COC alone on insulin sensitivity, hyperandrogenaemia, SHBG and lipids in PCOS patients. Hum Reprod. 2005;20(1):180–4.

    Article  CAS  PubMed  Google Scholar 

  83. Mastorakos G, Koliopoulos C, Deligeoroglou E, et al. Effects of two forms of combined oral contraceptives on carbohydrate metabolism in adolescents with polycystic ovary syndrome. Fertil Steril. 2006;85(2):420–7.

    Article  CAS  PubMed  Google Scholar 

  84. Hoeger K, Davidson K, Kochman L, et al. The impact of metformin, oral contraceptives, and lifestyle modification on polycystic ovary syndrome in obese adolescent women in two randomized, placebo-controlled clinical trials. J Clin Endocrinol Metab. 2008;93(11):4299–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Mastorakos G, Koliopoulos C, Creatsas G. Androgen and lipid profiles in adolescents with polycystic ovary syndrome who were treated with two forms of combined oral contraceptives. Fertil Steril. 2002;77(5):919–27.

    Article  PubMed  Google Scholar 

  86. Pasquali R, Gambineri A, Anconetani B, et al. The natural history of the metabolic syndrome in young women with the polycystic ovary syndrome and the effect of long-term oestrogen-progestagen treatment. Clin Endocrinol (Oxf). 1999;50(4):517–27.

    Article  CAS  Google Scholar 

  87. Christakou C, Kollias A, Piperi C, et al. The benefit-to-risk ratio of common treatments in PCOS: effect of oral contraceptives versus metformin on atherogenic markers. HORMONES. 2014;13:1–10.

    Google Scholar 

  88. Vlassara H. Advanced glycation in health and disease: role of the modern environment. Ann N Y Acad Sci. 2005;1043:452–60.

    Article  CAS  PubMed  Google Scholar 

  89. Lord JM, Flight IHK, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ. 2003;327(7421):951–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Bruno RV, de Avila MAP, Neves FB, et al. Comparison of two doses of metformin (2.5 and 1.5 g/day) for the treatment of polycystic ovary syndrome and their effect on body mass index and waist circumference. Fertil Steril. 2007;88(2):510–2.

    Article  CAS  PubMed  Google Scholar 

  91. Gambineri A, Patton L, Vaccina A, et al. Treatment with flutamide, metformin, and their combination added to a hypocaloric diet in overweight-obese women with polycystic ovary syndrome: a randomized, 12-month, placebo-controlled study. J Clin Endocrinol Metab. 2006;91(10):3970–80.

    Article  CAS  PubMed  Google Scholar 

  92. Tang T, Glanville J, Hayden CJ, et al. Combined lifestyle modification and metformin in obese patients with polycystic ovary syndrome. A randomized, placebo-controlled, double-blind multicentre study. Hum Reprod. 2006;21(1):80–9.

    Article  PubMed  Google Scholar 

  93. Weickert MO, Hodges P, Tan BK, et al. Neuroendocrine and endocrine dysfunction in the hyperinsulinemic PCOS patient: the role of metformin. Minerva Endocrinol. 2012;37(1):25–40.

    CAS  PubMed  Google Scholar 

  94. Arslanian SA, Lewy V, Danadian K, et al. Metformin therapy in obese adolescents with polycystic ovary syndrome and impaired glucose tolerance: amelioration of exaggerated adrenal response to adrenocorticotropin with reduction of insulinemia / insulin resistance. J Clin Endocrinol Metab. 2002;87(4):1555–9.

    Article  CAS  PubMed  Google Scholar 

  95. Diamanti-Kandarakis E, Kouli C, Tsianateli T, et al. Therapeutic effects of metformin on insulin resistance and hyperandrogenism in polycystic ovary syndrome. Eur J Endocrinol. 1998;138(3):269–74.

    Article  CAS  PubMed  Google Scholar 

  96. Palomba S, Falbo A, Russo T, et al. Insulin sensitivity after metformin suspension in normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92(8):3128–35.

    Article  CAS  PubMed  Google Scholar 

  97. Banaszewska B, Duleba AJ, Spaczynski RZ, et al. Lipids in polycystic ovary syndrome: role of hyperinsulinemia and effects of metformin. Am J Obstet Gynecol. 2006;194(5):1266–72.

    Article  CAS  PubMed  Google Scholar 

  98. Santana LF, de Sá MFS, Ferriani RA, et al. Effect of metformin on the clinical and metabolic assessment of women with polycystic ovary syndrome. Gynecol Endocrinol. 2004;19(2):88–96.

    Article  CAS  PubMed  Google Scholar 

  99. Muniyappa R, Montagnani M, Koh KK, et al. Cardiovascular actions of insulin. Endocr Rev. 2007;28(5):463–91.

    Article  CAS  PubMed  Google Scholar 

  100. Diamanti-Kandarakis E, Alexandraki K, Protogerou A, et al. Metformin administration improves endothelial function in women with polycystic ovary syndrome. Eur J Endocrinol. 2005;152(5):749–56.

    Article  CAS  PubMed  Google Scholar 

  101. Morin-Papunen L, Rautio K, Ruokonen A, et al. Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(10):4649–54.

    Article  CAS  PubMed  Google Scholar 

  102. Diamanti-Kandarakis E, Alexandraki K, Piperi C, et al. Effect of metformin administration on plasma advanced glycation end product levels in women with polycystic ovary syndrome. Metab Clin Exp. 2007;56(1):129–34.

    Article  CAS  PubMed  Google Scholar 

  103. Carmina E, Guastella E, Rizzo M. When periods stop: long-term consequences of PCOS. In: Farid NR, Diamanti-Kandarakis E, editors. Diagnosis and management of polycystic ovary syndrome. Boston: Springer US; 2009.

    Google Scholar 

  104. Solomon CG, Hu FB, Dunaif A, et al. Menstrual cycle irregularity and risk for future cardiovascular disease. J Clin Endocrinol Metab. 2002;87(5):2013–7.

    Article  CAS  PubMed  Google Scholar 

  105. Schmidt J, Landin-Wilhelmsen K, Brännström M, et al. Cardiovascular disease and risk factors in PCOS women of postmenopausal age: a 21-year controlled follow-up study. J Clin Endocrinol Metab. 2011;96(12):3794–803. Diabetes, cancer, and mortality prevalence was similar in the two cohorts with similar body mass index.

    Article  CAS  PubMed  Google Scholar 

  106. Wang ET, Ku IA, Shah SJ, et al. Polycystic ovary syndrome is associated with higher left ventricular mass index: the CARDIA women's study. J Clin Endocrinol Metab. 2012;97(12):4656–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. de Groot PC, Dekkers OM, Romijn JA, et al. PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and meta-analysis. Hum Reprod Update. 2011;17(4):495–500.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Thomas S. Paterakis and Evanthia Diamanti-Kandarakis declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evanthia Diamanti-Kandarakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paterakis, T.S., Diamanti-Kandarakis, E. Aspects of Cardiometabolic Risk in Women with Polycystic Ovary Syndrome. Curr Obes Rep 3, 377–386 (2014). https://doi.org/10.1007/s13679-014-0127-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-014-0127-6

Keywords

Navigation