Skip to main content

Advertisement

Log in

Microbiome in Hidradenitis Suppurativa: Current Evidence and Practice

  • Wound Care (H Lev-Tov, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose

The role of the host microbiome in hidradenitis suppurativa (HS) is heavily debated. Previous culture-based methods have not led to strong conclusions. Despite antibiotics being a mainstay of HS treatment, microbiome research in other cutaneous inflammatory diseases such as atopic dermatitis and psoriasis is more robust. This review evaluates the current evidence regarding the influence of skin and gut dysbiosis on HS pathogenesis. Current and potential future microbiome modulating therapeutic modalities are also discussed.

Recent Findings

Newer studies using 16S genome sequencing have furthered our understanding of the human microbiome. We find promising evidence for cutaneous dysbiosis but limited evidence for gut dysbiosis.

Summary

Both areas need future studies focusing on the temporal relationship between the microbiome and disease flare and remission and the impact of treatments on the microbiome. Detailed knowledge of microbial shifts will lead to innovations in diagnosis and treatment in the era of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von der Werth JM, Williams HC. The natural history of hidradenitis suppurativa. J Eur Acad Dermatol Venereol. 2000;14(5):389–92. https://doi.org/10.1046/j.1468-3083.2000.00087.x.

  2. Jemec GB. Hidradenitis suppurativa. Plast Reconstr Surg. 1987;80(5):754–5. https://doi.org/10.1097/00006534-198711000-00037.

    Article  CAS  PubMed  Google Scholar 

  3. Ingram JR. The epidemiology of hidradenitis suppurativa. Br J Dermatol. 2020;183(6):990–8. https://doi.org/10.1111/bjd.19435.

    Article  PubMed  Google Scholar 

  4. Laffert MV, Helmbold P, Wohlrab J, Fiedler E, Stadie V, Marsch WC. Hidradenitis suppurativa (acne inversa): early inflammatory events at terminal follicles and at interfollicular epidermis. Experimental dermatology. 2009;19(6):533–7. https://doi.org/10.1111/j.1600-0625.2009.00915.x.

  5. von Laffert M, Stadie V, Wohlrab J, Marsch WC. Hidradenitis suppurativa/acne inversa: bilocated epithelial hyperplasia with very different sequelae. Br J Dermatol. 2011;164(2):367–71. https://doi.org/10.1111/j.1365-2133.2010.10034.x.

    Article  Google Scholar 

  6. Vossen A, van der Zee HH, Prens EP. Hidradenitis suppurativa: a systematic review integrating inflammatory pathways into a cohesive pathogenic model. Front Immunol. 2018;9:2965. https://doi.org/10.3389/fimmu.2018.02965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Zee HH, de Ruiter L, van den Broecke DG, Dik WA, Laman JD, Prens EP. Elevated levels of tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 in hidradenitis suppurativa skin: a rationale for targeting TNF-α and IL-1β. Br J Dermatol. 2011;164(6):1292–8. https://doi.org/10.1111/j.1365-2133.2011.10254.x.

    Article  CAS  PubMed  Google Scholar 

  8. Thomi R, Cazzaniga S, Seyed Jafari SM, Schlapbach C, Hunger RE. Association of hidradenitis suppurativa with T helper 1/T helper 17 phenotypes: a semantic map analysis. JAMA Dermatol. 2018;154(5):592–5. https://doi.org/10.1001/jamadermatol.2018.0141.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Navrazhina K, Frew JW, Krueger JG. Interleukin 17C is elevated in lesional tissue of hidradenitis suppurativa. Br J Dermatol (1951). 2019;182(4):1045–7. https://doi.org/10.1111/bjd.18556.

  10. Melnik BC, Plewig G. Impaired Notch signalling: the unifying mechanism explaining the pathogenesis of hidradenitis suppurativa (acne inversa). British journal of dermatology (1951). 2013;168(4):876–8. https://doi.org/10.1111/bjd.12068.

  11. Melnik BC, Plewig G. Impaired Notch-MKP-1 signalling in hidradenitis suppurativa: an approach to pathogenesis by evidence from translational biology. Exp Dermatol. 2013;22(3):172–7. https://doi.org/10.1111/exd.12098.

    Article  CAS  PubMed  Google Scholar 

  12. Wang B, Yang W, Wen W, Sun J, Su B, Liu B et al. Secretase gene mutations in familial acne inversa. Science (American Association for the Advancement of Science). 2010;330(6007):1065-. https://doi.org/10.1126/science.1196284.

  13. Frew J, Vekic D, Woods J, Cains G. A systematic review and critical evaluation of reported pathogenic sequence variants in hidradenitis suppurativa. Br J Dermatol. 2017;177(4):987–98.

    Article  CAS  Google Scholar 

  14. Kraft JN, Searles GE. Hidradenitis suppurativa in 64 female patients: retrospective study comparing oral antibiotics and antiandrogen therapy. J Cutan Med Surg. 2007;11(4):125–31. https://doi.org/10.2310/7750.2007.00019.

    Article  CAS  PubMed  Google Scholar 

  15. Goldsmith PC, Dowd PM. Successful therapy of the follicular occlusion triad in a young woman with high dose oral antiandrogens and minocycline. J R Soc Med. 1993;86(12):729–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mortimer PS, Dawber RP, Gales MA, Moore RA. A double-blind controlled cross-over trial of cyproterone acetate in females with hidradenitis suppurativa. Br J Dermatol. 1986;115(3):263–8. https://doi.org/10.1111/j.1365-2133.1986.tb05740.x.

    Article  CAS  PubMed  Google Scholar 

  17. Randhawa HK, Hamilton J, Pope E. Finasteride for the treatment of hidradenitis suppurativa in children and adolescents. JAMA Dermatol. 2013;149(6):732–5. https://doi.org/10.1001/jamadermatol.2013.2874.

    Article  PubMed  Google Scholar 

  18. Joseph MA, Jayaseelan E, Ganapathi B, Stephen J. Hidradenitis suppurativa treated with finasteride. J Dermatolog Treat. 2005;16(2):75–8. https://doi.org/10.1080/09546630510031403.

    Article  CAS  PubMed  Google Scholar 

  19. Lewis F, Messenger AG, Wales JK. Hidradenitis suppurativa as a presenting feature of premature adrenarche. Br J Dermatol. 1993;129(4):447–8. https://doi.org/10.1111/j.1365-2133.1993.tb03174.x.

    Article  CAS  PubMed  Google Scholar 

  20. Shlyankevich J, Chen AJ, Kim GE, Kimball AB. Hidradenitis suppurativa is a systemic disease with substantial comorbidity burden: a chart-verified case-control analysis. J Am Acad Dermatol. 2014;71(6):1144–50. https://doi.org/10.1016/j.jaad.2014.09.012.

    Article  PubMed  Google Scholar 

  21. Melnik BC, John SM, Chen W, Plewig G. T helper 17 cell/regulatory T-cell imbalance in hidradenitis suppurativa/acne inversa: the link to hair follicle dissection, obesity, smoking and autoimmune comorbidities. Br J Dermatol. 2018;179(2):260–72. https://doi.org/10.1111/bjd.16561.

    Article  CAS  PubMed  Google Scholar 

  22. Schneider AM, Cook LC, Zhan X, Banerjee K, Cong Z, Imamura-Kawasawa Y, et al. Loss of Skin microbial diversity and alteration of bacterial metabolic function in hidradenitis suppurativa. J Invest Dermatol. 2020;140(3):716–20. https://doi.org/10.1016/j.jid.2019.06.151.

    Article  CAS  PubMed  Google Scholar 

  23. Schneider MR, Paus R. Deciphering the functions of the hair follicle infundibulum in skin physiology and disease. Cell Tissue Res. 2014;358(3):697–704. https://doi.org/10.1007/s00441-014-1999-1.

    Article  CAS  PubMed  Google Scholar 

  24. Polak-Witka K, Rudnicka L, Blume-Peytavi U, Vogt A. The role of the microbiome in scalp hair follicle biology and disease. Exp Dermatol. 2020;29(3):286–94. https://doi.org/10.1111/exd.13935.

    Article  PubMed  Google Scholar 

  25. Scharschmidt TC, Vasquez KS, Pauli ML, Leitner EG, Chu K, Truong HA, et al. Commensal microbes and hair follicle morphogenesis coordinately drive Treg migration into neonatal skin. Cell Host Microbe. 2017;21(4):467-77.e5. https://doi.org/10.1016/j.chom.2017.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okoye GA, Vlassova N, Olowoyeye O, Agostinho A, James G, Stewart PS et al. Bacterial biofilm in acute lesions of hidradenitis suppurativa. Br J Dermatol (1951). 2017;176(1):241–3. https://doi.org/10.1111/bjd.14805.

  27. Ring HC, Bay L, Nilsson M, Kallenbach K, Miller IM, Saunte DM, et al. Bacterial biofilm in chronic lesions of hidradenitis suppurativa. Br J Dermatol. 2017;176(4):993–1000. https://doi.org/10.1111/bjd.15007.

    Article  CAS  PubMed  Google Scholar 

  28. Eppinga H, Sperna Weiland CJ, Thio HB, van der Woude CJ, Nijsten TE, Peppelenbosch MP, et al. Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in hidradenitis suppurativa. J Crohn's Colitis. 2016;10(9):1067–75. https://doi.org/10.1093/ecco-jcc/jjw070.

  29. Alikhan A, Sayed C, Alavi A, Alhusayen R, Brassard A, Burkhart C, et al. North American clinical management guidelines for hidradenitis suppurativa: a publication from the United States and Canadian hidradenitis suppurativa foundations: part ii: topical, intralesional, and systemic medical management. J Am Acad Dermatol. 2019;81(1):91–101. https://doi.org/10.1016/j.jaad.2019.02.068.

    Article  PubMed  Google Scholar 

  30. Fischer AH, Haskin A, Okoye GA. Patterns of antimicrobial resistance in lesions of hidradenitis suppurativa. J Am Acad Dermatol. 2017;76(2):309-13.e2. https://doi.org/10.1016/j.jaad.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  31. Naik HB, Nassif A, Ramesh MS, Schultz G, Piguet V, Alavi A, et al. Are bacteria infectious pathogens in hidradenitis suppurativa? Debate at the Symposium for Hidradenitis Suppurativa Advances Meeting, November 2017. J Invest Dermatol. 2019;139(1):13–6. https://doi.org/10.1016/j.jid.2018.09.036.

    Article  CAS  PubMed  Google Scholar 

  32. Heilbronner S, Foster TJ. Staphylococcus lugdunensis: a skin commensal with invasive pathogenic potential. Clinical microbiology reviews. 2021;34(2). https://doi.org/10.1128/CMR.00205-20.

  33. Ring HCMD, Emtestam LMD. The microbiology of hidradenitis suppurativa. Dermatol Clin. 2016;34(1):29–35. https://doi.org/10.1016/j.det.2015.08.010.

    Article  CAS  PubMed  Google Scholar 

  34. Naik HB, Jo JH, Paul M, Kong HH. Skin microbiota perturbations are distinct and disease severity-dependent in hidradenitis suppurativa. J Invest Dermatol. 2020;140(4):922-5.e3. https://doi.org/10.1016/j.jid.2019.08.445.

    Article  CAS  PubMed  Google Scholar 

  35. Join-Lambert O, Coignard-Biehler H, Jais JP, Delage M, Guet-Revillet H, Poirée S, et al. Efficacy of ertapenem in severe hidradenitis suppurativa: a pilot study in a cohort of 30 consecutive patients. J Antimicrob Chemother. 2016;71(2):513–20. https://doi.org/10.1093/jac/dkv361.

    Article  CAS  PubMed  Google Scholar 

  36. Guet-Revillet H, Jais JP, Ungeheuer MN, Coignard-Biehler H, Duchatelet S, Delage M, et al. The microbiological landscape of anaerobic infections in hidradenitis suppurativa: a prospective metagenomic study. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2017;65(2):282–91. https://doi.org/10.1093/cid/cix285.

    Article  CAS  Google Scholar 

  37. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–10. https://doi.org/10.1038/nature06244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fredricks DN. Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc. 2001;6(3):167–9. https://doi.org/10.1046/j.0022-202x.2001.00039.x.

    Article  CAS  PubMed  Google Scholar 

  39. Nelson KE, Paulsen IT, Heidelberg JF, Fraser CM. Status of genome projects for nonpathogenic bacteria and archaea. Nat Biotechnol. 2000;18(10):1049–54. https://doi.org/10.1038/80235.

    Article  CAS  PubMed  Google Scholar 

  40. Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2(1):6. https://doi.org/10.1186/2049-2618-2-6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grogan MD, Bartow-McKenney C, Flowers L, Knight SAB, Uberoi A, Grice EA. Research techniques made simple: profiling the skin microbiota. J Invest Dermatol. 2019;139(4):747-52.e1. https://doi.org/10.1016/j.jid.2019.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Riverain-Gillet É, Guet-Revillet H, Jais J-P, Ungeheuer M-N, Duchatelet S, Delage M, et al. The surface microbiome of clinically unaffected skinfolds in hidradenitis suppurativa: a cross-sectional culture-based and 16S rRNA gene amplicon sequencing study in 60 patients. J Investig Dermatol. 2020;140(9):1847-55.e6. https://doi.org/10.1016/j.jid.2020.02.046.

    Article  CAS  PubMed  Google Scholar 

  43. Ring HC, Thorsen J, Saunte DM, Lilje B, Bay L, Riis PT, et al. The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls. JAMA dermatology (Chicago, Ill). 2017;153(9):897–905. https://doi.org/10.1001/jamadermatol.2017.0904.

    Article  Google Scholar 

  44. Guet-Revillet H, Coignard-Biehler H, Jais JP, Quesne G, Frapy E, Poirée S, et al. Bacterial pathogens associated with hidradenitis suppurativa. France Emerging infectious diseases. 2014;20(12):1990–8. https://doi.org/10.3201/eid2012.140064.

    Article  CAS  PubMed  Google Scholar 

  45. Bettoli V, Manfredini M, Massoli L, Carillo C, Barozzi A, Amendolagine G, et al. Rates of antibiotic resistance/sensitivity in bacterial cultures of hidradenitis suppurativa patients. J Eur Acad Dermatol Venereol. 2019;33(5):930–6. https://doi.org/10.1111/jdv.15332.

    Article  CAS  PubMed  Google Scholar 

  46. Benzecry V, Grancini A, Guanziroli E, Nazzaro G, Barbareschi M, Marzano AV, et al. Hidradenitis suppurativa/acne inversa: a prospective bacteriological study and review of the literature. G Ital Dermatol Venereol. 2020;155(4):459–63. https://doi.org/10.23736/S0392-0488.18.05875-3.

    Article  PubMed  Google Scholar 

  47. Jamalpour M, Saki N, Nozari F. Microbial profile and antibiotic susceptibility of bacteria isolated from patients with hidradenitis suppurativa. Iran J Dermatol. 2019;22(1):25–9.

  48. Nikolakis G, Liakou AI, Bonovas S, Seltmann H, Bonitsis N, Join-Lambert O, et al. Bacterial colonization in hidradenitis suppurativa/acne inversa: a cross-sectional study of 50 patients and review of the literature. Acta Derm Venereol. 2017;97(4):493–8. https://doi.org/10.2340/00015555-2591.

    Article  CAS  PubMed  Google Scholar 

  49. Hessam S, Sand M, Georgas D, Anders A, Bechara FG. Microbial profile and antimicrobial susceptibility of bacteria found in inflammatory hidradenitis suppurativa lesions. Skin pharmacology and physiology. 2016;29(3):161–7. https://doi.org/10.1159/000446812.

    Article  CAS  PubMed  Google Scholar 

  50. Matusiak Ł, Bieniek A, Szepietowski JC. Bacteriology of hidradenitis suppurativa - which antibiotics are the treatment of choice? Acta Derm Venereol. 2014;94(6):699–702. https://doi.org/10.2340/00015555-1841.

    Article  PubMed  Google Scholar 

  51. Thomas C, Rodby KA, Thomas J, Shay E, Antony AK. Recalcitrant hidradenitis suppurativa: an investigation of demographics, surgical management, bacterial isolates, pharmacologic intervention, and patient-reported health outcomes. Am Surg. 2016;82(4):362–8.

    Article  Google Scholar 

  52. Sartorius K, Killasli H, Oprica C, Sullivan A, Lapins J. Bacteriology of hidradenitis suppurativa exacerbations and deep tissue cultures obtained during carbon dioxide laser treatment: hidradenitis suppurativa exacerbation bacteriology. Br J Dermatol (1951). 2012;166(4):879–83. https://doi.org/10.1111/j.1365-2133.2011.10747.x.

  53. Ring HC, Sigsgaard V, Thorsen J, Fuursted K, Fabricius S, Saunte DM, et al. The microbiome of tunnels in hidradenitis suppurativa patients. J Eur Acad Dermatol Venereol. 2019;33(9):1775–80. https://doi.org/10.1111/jdv.15597.

    Article  CAS  PubMed  Google Scholar 

  54. Ring HC, Bay L, Kallenbach K, Miller IM, Prens E, Saunte DM, et al. Normal skin microbiota is altered in pre-clinical hidradenitis suppurativa. Acta Derm Venereol. 2017;97(2):208–13. https://doi.org/10.2340/00015555-2503.

    Article  CAS  PubMed  Google Scholar 

  55. Nagashima H, Takao A, Maeda N. Abscess forming ability of streptococcus milleri group: synergistic effect with Fusobacterium nucleatum. Microbiol Immunol. 1999;43(3):207–16. https://doi.org/10.1111/j.1348-0421.1999.tb02395.x.

    Article  CAS  PubMed  Google Scholar 

  56. Brook I. The role of anaerobic bacteria in cutaneous and soft tissue abscesses and infected cysts. Anaerobe. 2007;13(5–6):171–7. https://doi.org/10.1016/j.anaerobe.2007.08.004.

    Article  CAS  PubMed  Google Scholar 

  57. Landrygan-Bakri J, Wilson MJ, Williams DW, Lewis MA, Waddington RJ. Real-time monitoring of the adherence of Streptococcus anginosus group bacteria to extracellular matrix decorin and biglycan proteoglycans in biofilm formation. Res Microbiol. 2012;163(6–7):436–47. https://doi.org/10.1016/j.resmic.2012.07.006.

    Article  CAS  PubMed  Google Scholar 

  58. Donelli G, Vuotto C, Cardines R, Mastrantonio P. Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol Med Microbiol. 2012;65(2):318–25. https://doi.org/10.1111/j.1574-695X.2012.00962.x.

    Article  CAS  PubMed  Google Scholar 

  59. Yang HW, Huang YF, Chou MY. Occurrence of Porphyromonas gingivalis and Tannerella forsythensis in periodontally diseased and healthy subjects. J Periodontol. 2004;75(8):1077–83. https://doi.org/10.1902/jop.2004.75.8.1077.

    Article  PubMed  Google Scholar 

  60. Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151(4):363–74. https://doi.org/10.1111/imm.12760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis & rheumatology (Hoboken, NJ). 2016;68(11):2646–61. https://doi.org/10.1002/art.39783.

    Article  CAS  Google Scholar 

  62. Hardie JM. Oral microbiology: current concepts in the microbiology of dental caries and periodontal disease. Br Dent J. 1992;172(7):271–8. https://doi.org/10.1038/sj.bdj.4807849.

    Article  CAS  PubMed  Google Scholar 

  63. Murdoch DA. Gram-positive anaerobic cocci. Clin Microbiol Rev. 1998;11(1):81–120.

    Article  CAS  Google Scholar 

  64. Murphy EC, Frick IM. Gram-positive anaerobic cocci–commensals and opportunistic pathogens. FEMS Microbiol Rev. 2013;37(4):520–53. https://doi.org/10.1111/1574-6976.12005.

    Article  CAS  PubMed  Google Scholar 

  65. Brook I. Prevotella and Porphyromonas infections in children. J Med Microbiol. 1995;42(5):340–7. https://doi.org/10.1099/00222615-42-5-340.

    Article  CAS  PubMed  Google Scholar 

  66. Bieber L, Kahlmeter G. Staphylococcus lugdunensis in several niches of the normal skin flora. Clin Microbiol Infect. 2010;16(4):385–8. https://doi.org/10.1111/j.1469-0691.2009.02813.x.

    Article  CAS  PubMed  Google Scholar 

  67. Callewaert C, Kerckhof FM, Granitsiotis MS, Van Gele M, Van de Wiele T, Boon N. Characterization of Staphylococcus and Corynebacterium clusters in the human axillary region. PLoS ONE. 2013;8(8): e70538. https://doi.org/10.1371/journal.pone.0070538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53. https://doi.org/10.1038/nrmicro2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science (New York, NY). 2009;324(5931):1190–2. https://doi.org/10.1126/science.1171700.

    Article  CAS  Google Scholar 

  70. Chang HW, Yan D, Singh R, Liu J, Lu X, Ucmak D, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6(1):154. https://doi.org/10.1186/s40168-018-0533-1.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9. https://doi.org/10.1101/gr.131029.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Semin Immunol. 2013;25(5):370–7. https://doi.org/10.1016/j.smim.2013.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shu M, Wang Y, Yu J, Kuo S, Coda A, Jiang Y, et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE. 2013;8(2): e55380. https://doi.org/10.1371/journal.pone.0055380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thiboutot DM, Nelson AM. Keeping the peace: commensal Cutibacterium acnes trains CD4+ TH17 cells to trap and kill. J Clin Investig. 2021;131(2). https://doi.org/10.1172/jci145379.

  75. Nakamizo S, Egawa G, Honda T, Nakajima S, Belkaid Y, Kabashima K. Commensal bacteria and cutaneous immunity. Seminars in Immunopathology. 2015;37(1):73–80. https://doi.org/10.1007/s00281-014-0452-6.

    Article  CAS  PubMed  Google Scholar 

  76. Lai Y, Cogen AL, Radek KA, Park HJ, MacLeod DT, Leichtle A, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Investig Dermatol. 2010;130(9):2211–21. https://doi.org/10.1038/jid.2010.123.

    Article  CAS  PubMed  Google Scholar 

  77. Naik S, Bouladoux N, Linehan JL, Han S-J, Harrison OJ, Wilhelm C, et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520(7545):104–8. https://doi.org/10.1038/nature14052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Haskin A, Fischer AH, Okoye GA. Prevalence of firmicutes in lesions of hidradenitis suppurativa in obese patients. JAMA Dermatol. 2016;152(11):1276–8. https://doi.org/10.1001/jamadermatol.2016.2337.

    Article  PubMed  Google Scholar 

  79. Kam S, Collard M, Lam J, Alani RM. Gut microbiome perturbations in patients with hidradenitis suppurativa: a case series. J Investig Dermatol. 2021;141(1):225-8.e2. https://doi.org/10.1016/j.jid.2020.04.017.

    Article  CAS  PubMed  Google Scholar 

  80. Lam SY, Radjabzadeh D, Eppinga H, Nossent YRA, van der Zee HH, Kraaij R, et al. A microbiome study to explore the gut-skin axis in hidradenitis suppurativa. J Dermatol Sci. 2021. https://doi.org/10.1016/j.jdermsci.2020.12.008.

    Article  PubMed  Google Scholar 

  81. Alam MT, Amos GCA, Murphy ARJ, Murch S, Wellington EMH, Arasaradnam RP. Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut pathogens. 2020;12:1. https://doi.org/10.1186/s13099-019-0341-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kong CY, Li ZM, Han B, Zhang ZY, Chen HL, Zhang SL, et al. Diet consisting of balanced yogurt, fruit, and vegetables modifies the gut microbiota and protects mice against nonalcoholic fatty liver disease. Mol Nutr Food Res. 2019;63(19):1900249.

    Article  CAS  Google Scholar 

  83. Savin Z, Kivity S, Yonath H, Yehuda S. Smoking and the intestinal microbiome. Arch Microbiol. 2018;200(5):677–84. https://doi.org/10.1007/s00203-018-1506-2.

    Article  CAS  PubMed  Google Scholar 

  84. Devkota S, Chang EB. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig Dis. 2015;33(3):351–6. https://doi.org/10.1159/000371687.

    Article  PubMed  Google Scholar 

  85. Natividad JM, Lamas B, Pham HP, Michel M-L, Rainteau D, Bridonneau C, et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat Commun. 2018;9(1):1–15.

    Article  CAS  Google Scholar 

  86. Vital M, Karch A, Pieper DH. Colonic butyrate-producing communities in humans: an overview using omics data. Msystems. 2017;2(6).

  87. Ferraris L, Aires J, Butel MJ. Isolation of Robinsoniella peoriensis from the feces of premature neonates. Anaerobe. 2012;18(1):172–3. https://doi.org/10.1016/j.anaerobe.2011.11.007.

    Article  PubMed  Google Scholar 

  88. Sun Y, Chen Q, Lin P, Xu R, He D, Ji W, et al. Characteristics of gut microbiota in patients with rheumatoid arthritis in Shanghai, China. Front Cell Infect Microbiol. 2019;9:369. https://doi.org/10.3389/fcimb.2019.00369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen Z, Qi J, Wei Q, Zheng X, Wu X, Li X, et al. Variations in gut microbial profiles in ankylosing spondylitis: disease phenotype-related dysbiosis. Annals of translational medicine. 2019;7(20):571. https://doi.org/10.21037/atm.2019.09.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16(3):255–61. https://doi.org/10.1016/j.mib.2013.06.003.

    Article  CAS  PubMed  Google Scholar 

  91. Quévrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. 2016;65(3):415–25. https://doi.org/10.1136/gutjnl-2014-307649.

    Article  CAS  PubMed  Google Scholar 

  92. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJ, Garcia-Gil LJ, Flint HJ. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol. 2012;78(2):420–8. https://doi.org/10.1128/aem.06858-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Principi M, Cassano N, Contaldo A, Iannone A, Losurdo G, Barone M, et al. Hydradenitis suppurativa and inflammatory bowel disease: an unusual, but existing association. World J Gastroenterol. 2016;22(20):4802–11. https://doi.org/10.3748/wjg.v22.i20.4802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Investig. 2013;123(2):700–11. https://doi.org/10.1172/jci62236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305. https://doi.org/10.1038/s41564-018-0306-4.

    Article  CAS  PubMed  Google Scholar 

  96. Bringiotti R, Ierardi E, Lovero R, Losurdo G, Di Leo A, Principi M. Intestinal microbiota: the explosive mixture at the origin of inflammatory bowel disease? World journal of gastrointestinal pathophysiology. 2014;5(4):550–9. https://doi.org/10.4291/wjgp.v5.i4.550.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Maarouf M, Platto JF, Shi VY. The role of nutrition in inflammatory pilosebaceous disorders: implication of the skin-gut axis. Australas J Dermatol. 2019;60(2):e90–8. https://doi.org/10.1111/ajd.12909.

    Article  PubMed  Google Scholar 

  98. Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol. 2013;22(5):311–5. https://doi.org/10.1111/exd.12142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Danby FW. Diet in the prevention of hidradenitis suppurativa (acne inversa). J Am Acad Dermatol. 2015;73(5, Supplement 1):S52-S4. https://doi.org/10.1016/j.jaad.2015.07.042.

  100. Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. Journal of diabetes investigation. 2018;9(1):5–12. https://doi.org/10.1111/jdi.12673.

    Article  PubMed  Google Scholar 

  101. Zouboulis CC, Desai N, Emtestam L, Hunger RE, Ioannides D, Juhász I, et al. European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. J Eur Acad Dermatol Venereol. 2015;29(4):619–44. https://doi.org/10.1111/jdv.12966.

    Article  CAS  PubMed  Google Scholar 

  102. Join-Lambert O, Coignard H, Jais JP, Guet-Revillet H, Poirée S, Fraitag S, et al. Efficacy of rifampin-moxifloxacin-metronidazole combination therapy in hidradenitis suppurativa. Dermatology (Basel, Switzerland). 2011;222(1):49–58. https://doi.org/10.1159/000321716.

    Article  CAS  Google Scholar 

  103. Delage M, Jais JP, Lam T, Guet-Revillet H, Ungeheuer MN, Consigny PH, et al. Rifampin-moxifloxacin-metronidazole combination therapy for severe Hurley stage 1 hidradenitis suppurativa: prospective short-term trial and one-year follow-up in 28 consecutive patients. J Am Acad Dermatol. 2020. https://doi.org/10.1016/j.jaad.2020.01.007.

    Article  PubMed  Google Scholar 

  104. Kathju S, Lasko L-A, Stoodley P. Considering hidradenitis suppurativa as a bacterial biofilm disease. FEMS Immunol Med Microbiol. 2012;65(2):385–9. https://doi.org/10.1111/j.1574-695X.2012.00946.x.

    Article  CAS  PubMed  Google Scholar 

  105. Ardon CB, Prens EP, Fuursted K, Ejaz RN, Shailes J, Jenssen H, et al. Biofilm production and antibiotic susceptibility of Staphylococcus epidermidis strains from hidradenitis suppurativa lesions. J Eur Acad Dermatol Venereol. 2019;33(1):170–7. https://doi.org/10.1111/jdv.15183.

    Article  CAS  PubMed  Google Scholar 

  106. Aboud C, Zamaria N, Cannistrà C. Treatment of hidradenitis suppurativa: surgery and yeast (Saccharomyces cerevisiae)-exclusion diet. Results after 6 years. Surgery. 2020;167(6):1012–5. https://doi.org/10.1016/j.surg.2019.12.015.

  107. Frew JW. Anti-Saccharomyces cervisiae antibodies in hidradenitis suppurativa: more than a gut feeling. J Allergy Clin Immunol. 2020;146(2):458. https://doi.org/10.1016/j.jaci.2020.03.022.

    Article  PubMed  Google Scholar 

  108. Hessam S, Sand M, Meier NM, Gambichler T, Scholl L, Bechara FG. Combination of oral zinc gluconate and topical triclosan: an anti-inflammatory treatment modality for initial hidradenitis suppurativa. J Dermatol Sci. 2016;84(2):197–202. https://doi.org/10.1016/j.jdermsci.2016.08.010.

    Article  CAS  PubMed  Google Scholar 

  109. Zackular JP, Moore JL, Jordan AT, Juttukonda LJ, Noto MJ, Nicholson MR, et al. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat Med. 2016;22(11):1330–4. https://doi.org/10.1038/nm.4174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alfhili MA, Lee MH. Triclosan: an update on biochemical and molecular mechanisms. Oxid Med Cell Longev. 2019;2019:1607304. https://doi.org/10.1155/2019/1607304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Agut-Busquet E, Romaní J, Gilaberte Y, García-Malinis A, Ribera-Pibernat M, Luelmo J. Photodynamic therapy with intralesional methylene blue and a 635 nm light-emitting diode lamp in hidradenitis suppurativa: a retrospective follow-up study in 7 patients and a review of the literature. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. 2016;15(8):1020–8. https://doi.org/10.1039/c6pp00082g.

    Article  CAS  Google Scholar 

  112. Fadel MA, Tawfik AA. New topical photodynamic therapy for treatment of hidradenitis suppurativa using methylene blue niosomal gel: a single-blind, randomized, comparative study. Clin Exp Dermatol. 2015;40(2):116–22. https://doi.org/10.1111/ced.12459.

    Article  CAS  PubMed  Google Scholar 

  113. Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. 2004;3(5):436–50. https://doi.org/10.1039/b311900a.

    Article  CAS  Google Scholar 

  114. Lev-Tov H. Hidradenitis Suppurativa (HS) Tunneling Wounds. 2020. https://www.clinicaltrials.gov/ct2/show/NCT04648631. Accessed March 3 2021.

  115. Jemec GB. Intralesional diode laser treatment of fistulas in hidradenitis suppurativa. 2020. https://clinicaltrials.gov/ct2/show/NCT04508374. Accessed March 3 2021.

  116. Ribaldone DG, Caviglia GP, Abdulle A, Pellicano R, Ditto MC, Morino M, et al. Adalimumab therapy improves intestinal dysbiosis in Crohn’s disease. J Clin Med. 2019;8(10):1646. https://doi.org/10.3390/jcm8101646.

    Article  CAS  PubMed Central  Google Scholar 

  117. Busquets D, Mas-de-Xaxars T, López-Siles M, Martínez-Medina M, Bahí A, Sàbat M, et al. Anti-tumour necrosis factor treatment with adalimumab induces changes in the microbiota of Crohn’s disease. J Crohns Colitis. 2015;9(10):899–906. https://doi.org/10.1093/ecco-jcc/jjv119.

    Article  PubMed  Google Scholar 

  118. Anderson JL, Edney RJ, Whelan K. Systematic review: faecal microbiota transplantation in the management of inflammatory bowel disease. Aliment Pharmacol Ther. 2012;36(6):503–16. https://doi.org/10.1111/j.1365-2036.2012.05220.x.

    Article  CAS  PubMed  Google Scholar 

  119. Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Science translational medicine. 2017;9(378). https://doi.org/10.1126/scitranslmed.aah4680.

  120. Garg A, Hundal J, Strunk A. Overall and subgroup prevalence of Crohn disease among patients with hidradenitis suppurativa: a population-based analysis in the United States. JAMA dermatology (Chicago, Ill). 2018;154(7):814–8. https://doi.org/10.1001/jamadermatol.2018.0878.

    Article  Google Scholar 

  121. Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, et al. Skin microbiome surveys are strongly influenced by experimental design. J Invest Dermatol. 2016;136(5):947–56. https://doi.org/10.1016/j.jid.2016.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Boers SA, Jansen R, Hays JP. Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur J Clin Microbiol Infect Dis. 2019;38(6):1059–70. https://doi.org/10.1007/s10096-019-03520-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lekang K, Hadziavdic K, Sandnes Skaar K, Jonassen I, Thompson EM, Troedsson C. Development and testing of an 18S rRNA phylogenetic microarray for marine sediments. J Microbiol Methods. 2018;154:95–106. https://doi.org/10.1016/j.mimet.2018.10.007.

    Article  CAS  PubMed  Google Scholar 

  124. Hilton SK, Castro-Nallar E, Pérez-Losada M, Toma I, McCaffrey TA, Hoffman EP et al. Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology. Front Microbiol. 2016;7:484. https://doi.org/10.3389/fmicb.2016.00484.

  125. Young AP, Jackson DJ, Wyeth RC. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ. 2020;8:e8806-e. https://doi.org/10.7717/peerj.8806.

  126. Shakoori AR. Fluorescence in situ hybridization (FISH) and its applications. Chromosome Structure and Aberrations. 2017:343–67. https://doi.org/10.1007/978-81-322-3673-3_16.

  127. Im K, Mareninov S, Diaz MFP, Yong WH. An introduction to performing immunofluorescence staining. Methods Mol Biol. 2019;1897:299–311. https://doi.org/10.1007/978-1-4939-8935-5_26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jahns A, Killasli H, Nosek D, Lundskog B, Lenngren A, Muratova Z et al. Microbiology of hidradenitis suppurativa (acne inversa): a histological study of 27 patients. 2014. p. 804.

  129. Katoulis AC, Koumaki D, Liakou AI, Vrioni G, Koumaki V, Kontogiorgi D, et al. Aerobic and anaerobic bacteriology of hidradenitis suppurativa: a study of 22 cases. Skin appendage disorders. 2015;1(2):55–9. https://doi.org/10.1159/000381959.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lapins, Jarstrand, Emtestam. Coagulase-negative staphylococci are the most common bacteria found in cultures from the deep portions of hidradenitis suppurativa lesions, as obtained by carbon dioxide laser surgery. British journal of dermatology (1951). 1999;140(1):90–5. https://doi.org/10.1046/j.1365-2133.1999.02613.x.

  131. Brook I, Frazier EH. Aerobic and anaerobic microbiology of axillary hidradenitis suppurativa. J Med Microbiol. 1999;48(1):103–5. https://doi.org/10.1099/00222615-48-1-103.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

VYS is on the board of directors for the Hidradenitis Suppurativa Foundation (HSF), is a stock shareholder of Learn Health, and has served as an advisory board member, investigator, speaker, and/or received research funding from Sanofi Genzyme, Regeneron, AbbVie, Eli Lilly, Novartis, SUN Pharma, LEO Pharma, Pfizer, Menlo Therapeutics, Dermira, Burt’s Bees, Galderma, Kiniksa, UCB, Altus Lab, MYOR, Polyfin, GpSkin, and Skin Actives Scientific. IHH has served as an advisory board member, investigator, and/or received research funding from Abbvie, Pfizer, Lenicura, Incyte, UCB, and Boehringer Ingelheim and serves as a non-compensated board member at the HS foundation. JLH is on the board of directors for the Hidradenitis Suppurativa Foundation (HSF) and has served as an advisory board member for Novartis and speaker for AbbVie. The other authors have no relevant COI to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Wound Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J., Rick, J., Hsiao, J. et al. Microbiome in Hidradenitis Suppurativa: Current Evidence and Practice. Curr Derm Rep 11, 21–39 (2022). https://doi.org/10.1007/s13671-021-00349-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-021-00349-y

Keywords

Navigation