Skip to main content

Advertisement

Log in

Photoaging: a Review of Current Literature

  • Photodermatology (B Adler and V DeLeo, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Photoaging, also known as extrinsic aging, consists of premature skin changes secondary to damage caused by chronic sun exposure. This review highlights epidemiology, pathogenesis, clinical, and pathological features of photoaging.

Recent Findings

UV radiation is the central driver of photoaging. However, there is growing evidence that other environmental factors—including ambient air pollution and visible/infrared light—also play a key role. Furthermore, newer research suggests that skin phototype, ethnicity, and sex can all differentially mediate the process of photoaging.

Summary

UV radiation is the primary cause of photoaging, an extrinsic aging of the skin. This process can be exacerbated by other factors including air pollution, visible/infrared light, and endocrine factors. Clinically, decreased skin elasticity (solar elastosis) with wrinkle formation is a characteristic feature. However, differences in the features and timing of presentation may vary by skin phototype, ethnicity, and sex. Prevention through minimizing solar irradiation is key.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tobin DJ. Introduction to skin aging. J Tissue Viability. 2017;26(1):37–46. https://doi.org/10.1016/j.jtv.2016.03.002.

    Article  PubMed  Google Scholar 

  2. • Chien AL, Suh J, Sisto S, et al. Pigmentation in African American skin decreases with skin aging. J Am Acad Dermatol. 2016;75(4):782–7. https://doi.org/10.1016/j.jaad.2016.05.007Cohort study demonstrating that changes in skin pigmentation with photoexposure and with age differ between African Americans and Caucasians, suggesting that different pathological processes and clinical features may characterize photoaging in skin of color.

    Article  PubMed  Google Scholar 

  3. Alexis AF, Obioha JO. Ethnicity and aging skin. J Drugs Dermatology. 2017;16(6):77–80.

    Google Scholar 

  4. Han A, Chien AL, Kang S. Photoaging. Dermatol Clin. 2014;32:291–9. https://doi.org/10.1016/j.det.2014.03.015.

    Article  CAS  PubMed  Google Scholar 

  5. McDaniel D, Farris P, Valacchi G. Atmospheric skin aging—contributors and inhibitors. J Cosmet Dermatol. 2018;17:124–37. https://doi.org/10.1111/jocd.12518.

    Article  PubMed  Google Scholar 

  6. Flood KS, Houston NA, Savage KT, Kimball AB. Genetic basis for skin youthfulness. Clin Dermatol. 2019;37(4):312–9. https://doi.org/10.1016/j.clindermatol.2019.04.007.

    Article  PubMed  Google Scholar 

  7. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138:1462–70.

    Article  CAS  Google Scholar 

  8. • Chien AL, Qi J, Grandhi R, et al. Effect of age, gender, and sun exposure on ethnic skin photoaging: evidence gathered using a new photonumeric scale. J Natl Med Assoc. 2018;110(2):176–81. https://doi.org/10.1016/j.jnma.2017.05.001Study developing novel, reliable photonumeric scale to assess photoaging in darker skin types, as previous scales were developed towards Caucasian and Asian individuals.

    Article  PubMed  Google Scholar 

  9. Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev. 2015;21:16–29. https://doi.org/10.1016/j.arr.2015.01.001.

    Article  CAS  PubMed  Google Scholar 

  10. Krutmann J, Schroeder P. Role of mitochondria in photoaging of human skin: the defective powerhouse model. J Invest Dermatol. 2009;14:44–9. https://doi.org/10.1038/jidsymp.2009.1.

    Article  CAS  Google Scholar 

  11. Kimball AB, Alora-palli MB, Tamura M, et al. Age-induced and photoinduced changes in gene expression profiles in facial skin of Caucasian females across 6 decades of age. J Am Acad Dermatol. 2018;78(1):29–39. https://doi.org/10.1016/j.jaad.2017.09.012.

    Article  CAS  PubMed  Google Scholar 

  12. Orioli D, Dellambra E. Epigenetic regulation of skin cells in natural aging and premature aging diseases. Cells. 2018;7(268):1–30. https://doi.org/10.3390/cells7120268.

    Article  CAS  Google Scholar 

  13. Vandiver AR, Irizarry RA, Hansen KD, et al. Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin. Genome Biol. 2015;16(80):1–15. https://doi.org/10.1186/s13059-015-0644-y.

    Article  CAS  Google Scholar 

  14. Quan T, Qin Z, Xu Y, He T, Kang S, Voorhees JJ, et al. Ultraviolet irradiation induces CYR61/CCN1, a mediator of collagen homeostasis, through activation of transcription factor AP-1 in human skin fibroblasts. J Invest Dermatol. 2010;130(6):1697–706. https://doi.org/10.1038/jid.2010.29.

    Article  CAS  PubMed  Google Scholar 

  15. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol. 2004;165(3):741–51. https://doi.org/10.1016/S0002-9440(10)63337-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quan T, He T, Shao Y, Lin L, Kang S, Voorhees JJ, et al. Elevated cysteine-rich 61 mediates aberrant collagen homeostasis in chronologically aged and photoaged human skin. Am J Pathol. 2006;169(2):482–90. https://doi.org/10.2353/ajpath.2006.060128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Choi YJ, Moon KM, Chung KW, et al. The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging. Oncotarget. 2016;7(33):52685–94 Study demonstrating upregulation of the mTORC2 pathway and subsequent NFκB activation in UVB-induced photoaging in mouse models.

    Article  Google Scholar 

  18. Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol. 2012;132:1901–7. https://doi.org/10.1038/jid.2011.476.

    Article  CAS  PubMed  Google Scholar 

  19. Kielbassa C, Roza L, Epe B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis. 1997;18(4):811–6.

    Article  CAS  Google Scholar 

  20. •• Lim H, Kang S, Chien AL. Photodamage in skin of colour. In: Comprehensive Series in Photochemistry and Photobiology, Volume 19. 2019:31–58. Literature review comparing the effects of UV radiation, visible light, and infrared radiation on photoaging, esepcially their effects in skin of color.

  21. Mahmoud BH, Ruvolo E, Hexsel CL, Liu Y, Owen MR, Kollias N, et al. Impact of long-wavelength UVA and visible light on melanocompetent skin. J Invest Dermatol. 2010;130(8):2092–7. https://doi.org/10.1038/jid.2010.95.

    Article  CAS  PubMed  Google Scholar 

  22. Randhawa M, Seo I, Liebel F, Southall MD, Kollias N, Ruvolo E. Visible light induces melanogenesis in human skin through a photoadaptive response. PLoS One. 2015;10(6):1–14. https://doi.org/10.1371/journal.pone.0130949.

    Article  CAS  Google Scholar 

  23. • Regazzetti C, Sormani L, Debayle D, Tulic MK, Passeron T. Melanocytes sense blue light and regulate pigmentation through opsin-3. J Invest Dermatol. 2018;(138):171–8. https://doi.org/10.1016/j.jid.2017.07.833Study demonstrating that long-lasting hyperpigmentation induced by the shorter wavelengths of visible light in skin of color may result from downstream effects of opsin-3, a multimeric tyrosinase protein complex more abundant in melanocytes of individuals with darker skin phototypes.

  24. Calles C, Schneider M, Macaluso F, Benesova T, Krutmann J, Schroeder P. Infrared a radiation influences the skin fibroblast transcriptome: mechanisms and consequences. J Invest Dermatol. 2010;130:1524–36. https://doi.org/10.1038/jid.2010.9.

    Article  CAS  PubMed  Google Scholar 

  25. Costa A, Eberlin S, Clerici SP, Abdalla BM. In vitro effects of infrared a radiation on the synthesis of MMP-1, catalase, superoxide dismutase and GADD45 alpha protein. Inflamm Allergy Drug Targets. 2015;14:53–9.

    Article  CAS  Google Scholar 

  26. Schroeder P, Haendeler J, Krutmann J. The role of near infrared radiation in photoaging of the skin. Exp Gerontol. 2008;43:629–32. https://doi.org/10.1016/j.exger.2008.04.010.

    Article  CAS  PubMed  Google Scholar 

  27. Schieke SM, Schroeder P, Krutmann J. Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms. Photodermatol Photoimmunol Photomed. 2003;19:228–34.

    Article  CAS  Google Scholar 

  28. Grether-Beck S, Marini A, Jaenicke T, Krutmann J. Photoprotection of human skin beyond ultraviolet radiation. Photodermatol Photoimmunol Photomed. 2014;30:167–74. https://doi.org/10.1111/phpp.12111.

    Article  PubMed  Google Scholar 

  29. Kim M, Kim YK, Cho KH, Chung JH. Regulation of type I procollagen and MMP-1 expression after single or repeated exposure to infrared radiation in human skin. Mech Ageing Dev. 2006;127:875–82. https://doi.org/10.1016/j.mad.2006.09.007.

    Article  CAS  PubMed  Google Scholar 

  30. Kim HH, Lee MJ, Lee SR, Kim KH, Cho KH, Eun HC, et al. Augmentation of UV-induced skin wrinkling by infrared irradiation in hairless mice. Mech Ageing Dev. 2005;126:1170–7. https://doi.org/10.1016/j.mad.2005.06.003.

    Article  CAS  PubMed  Google Scholar 

  31. Holzer AM, Athar M, Elmets CA. The other end of the rainbow: infrared and skin. J Invest Dermatol. 2010;130:1496–9. https://doi.org/10.1038/jid.2010.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Michalski B, Olasz E. What you didn’t know about the sun: infrared radiation and its role in photoaging. Plast Surg Nurs. 2016;36(4):170–2. https://doi.org/10.1097/PSN.0000000000000157.

    Article  PubMed  Google Scholar 

  33. Chung JH, Eun HC. Angiogenesis in skin aging and photoaging. J Dermatol. 2007;34:593–600. https://doi.org/10.1111/j.1346-8138.2007.00341.x.

    Article  CAS  PubMed  Google Scholar 

  34. Vierko A, Schikowski T, Ranft U, et al. Airborne particle exposure and extrinsic skin aging. J Invest Dermatol. 2010;130:2719–26. https://doi.org/10.1038/jid.2010.204.

    Article  CAS  Google Scholar 

  35. Mancebo SE, Wang SQ. Recognizing the impact of ambient air pollution on skin health. J Eur Acad Dermatology Venereol. 2015;29(12):2326–32. https://doi.org/10.1111/jdv.13250.

    Article  CAS  Google Scholar 

  36. •• Burke KE. Mechanisms of aging and development — a new understanding of environmental damage to the skin and prevention with topical antioxidants. Mech Ageing Dev. 2018;172(2017):123–30. https://doi.org/10.1016/j.mad.2017.12.003Update on the synergistic effects of environmental exposures (i.e. particulate matter air pollution, ozone) and UV radiation on premature aging of the skin.

    Article  PubMed  Google Scholar 

  37. Vierkötter A, Krutmann J. Environmental influences on skin aging and ethnic-specific manifestations. Dermatoendocrinol. 2012;4(3):227–31. https://doi.org/10.4161/derm.19858.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chien AL, Qi J, Cheng N, Do TT, Mesfin M, Egbers R, et al. Perioral wrinkles are associated with female gender, aging, and smoking: development of a gender-specific photonumeric scale. J Am Acad Dermatol. 2016;74:924–30. https://doi.org/10.1016/j.jaad.2015.11.042.

    Article  PubMed  Google Scholar 

  39. Fang J, Wang P, Huang C, Chen M, Wu Y, Pan T. Skin aging caused by intrinsic or extrinsic processes characterized with functional proteomics. Proteomics. 2016;16:2718–31. https://doi.org/10.1002/pmic.201600141.

    Article  CAS  PubMed  Google Scholar 

  40. Strnadova K, Sandera V, Dvorankova B, Kodet O, Duskova M, Smetana K, et al. Skin aging: the dermal perspective. Clin Dermatol. 2019;37(4):326–35. https://doi.org/10.1016/j.clindermatol.2019.04.005.

    Article  PubMed  Google Scholar 

  41. Zouboulis CC, Makrantonaki E, Nikolakis G. When the skin is in the center of interest: an aging issue. Clin Dermatol. 2019;37(4):296–305. https://doi.org/10.1016/j.clindermatol.2019.04.004.

    Article  PubMed  Google Scholar 

  42. •• Venkatesh S, Maymone MBC, Vashi NA. Aging in skin of color. Clin Dermatol. 2019;37(4):351–7. https://doi.org/10.1016/j.clindermatol.2019.04.010Review of ethnic differences in the features of photoaging and properties of skin to guide prevention and treatment in a diverse patient population.

    Article  PubMed  Google Scholar 

  43. Vashi NA, Buainain M, Maymone DEC, Kundu RV. Aging differences in ethnic skin. J Clin Aesthet Dermatol. 2016;9(1):31–8.

    PubMed  PubMed Central  Google Scholar 

  44. Ho SGY, Chan HHL. The Asian dermatologic patient: review of common pigmentary disorders and cutaneous diseases. Am J Clin Dermatol. 2009;10(3):153–68.

    Article  Google Scholar 

  45. Le Digabel J, Houriez-gombaud-saintonge S, Lauze C, et al. Dermal fiber structures and photoaging. J Biomed Opt. 2018;23(9):096501. https://doi.org/10.1117/1.JBO.23.9.096501.

    Article  Google Scholar 

  46. Weihermann AC, Lorencini M, Brohem CA, De Carvalho CM. Elastin structure and its involvement in skin photoageing. Int J Cosmet Sci. 2017;39:241–7. https://doi.org/10.1111/ics.12372.

    Article  CAS  PubMed  Google Scholar 

  47. Fernandez-Flores A, Saeb-Lima M. Histopathology of cutaneous aging. Am J Dermatopathol. 2019;41(7):469–79.

    Article  Google Scholar 

  48. Brennan M, Bhatti H, Nerusu KC, Bhagavathula N, Kang S, Fisher GJ, et al. Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol. 2003;78(1):43–8.

    Article  CAS  Google Scholar 

  49. • Langton AK, Alessi S, Hann M, et al. Aging in skin of color: disruption to elastic fiber organization is detrimental to skin’s biomechanical function. J Invest Dermatol. 2018;139(4):779–88. https://doi.org/10.1016/j.jid.2018.10.026Cross-sectional study assessing the biomechanical and histologic consequences of aging in African-American volunteers that demonstrated significant impairment in skin function and composition with photoaging, despite increased presence of melanin compared with patients with lightly pigmented skin.

    Article  CAS  PubMed  Google Scholar 

  50. Kim M, Kim Y, Lee D, Seo JE, Cho KH, Eun HC, et al. Acute exposure of human skin to ultraviolet or infrared radiation or heat stimuli increases mast cell numbers and tryptase expression in human skin in vivo. Br J Dermatol. 2009;160:393–402. https://doi.org/10.1111/j.1365-2133.2008.08838.x.

    Article  CAS  PubMed  Google Scholar 

  51. Cho BA, Yoo S, Seo J. Signatures of photo-aging and intrinsic aging in skin were revealed by transcriptome network analysis. Aging (Albany NY). 2018;10(7):1609–26.

    Article  CAS  Google Scholar 

  52. Keaney TC. Aging in the male face: intrinsic and extrinsic factors. Dermatol Surg. 2016;42:797–803. https://doi.org/10.1097/DSS.0000000000000505.

    Article  CAS  PubMed  Google Scholar 

  53. Tsukahara K, Hotta M, Osanai O, Kawada H, Kitahara T, Takema Y. Gender-dependent differences in degree of facial wrinkles. Skin Res Technol. 2013;19:e65–71. https://doi.org/10.1111/j.1600-0846.2011.00609.x.

    Article  PubMed  Google Scholar 

  54. Paes EC, Teepen HJLJM, Koop WA, Kon M. Perioral wrinkles: histologic differences between men and women. Aesthet Surg J. 2009;29(6):467–72. https://doi.org/10.1016/j.asj.2009.08.018.

    Article  PubMed  Google Scholar 

  55. Röck K, Joosse SA, Müller J, Heinisch N, Fuchs N, Meusch M, et al. Chronic UVB-irradiation actuates perpetuated dermal matrix remodeling in female mice: protective role of estrogen. Sci Rep. 2016;6(30482):1–11. https://doi.org/10.1038/srep30482.

    Article  CAS  Google Scholar 

  56. Rzepecki AK, Murase JE, Juran R, Fabi SG, Mclellan BN. Estrogen-deficient skin: the role of topical therapy. Int J Womens Dermatology. 2019;5(2):85–90. https://doi.org/10.1016/j.ijwd.2019.01.001.

    Article  Google Scholar 

  57. Zouboulis CC, Ganceviciene R, Liakou AI, Theodoridis A, Elewa R, Makrantonaki E. Aesthetic aspects of skin aging, prevention, and local treatment. Clin Dermatol. 2019;37(4):365–72. https://doi.org/10.1016/j.clindermatol.2019.04.002.

    Article  PubMed  Google Scholar 

  58. Chien AL, Kang S. Photoaging. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA. (accessed on October 13, 2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. Chien.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Photodermatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, A.H., Chien, A.L. Photoaging: a Review of Current Literature. Curr Derm Rep 9, 22–29 (2020). https://doi.org/10.1007/s13671-020-00288-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-020-00288-0

Keywords

Navigation