Skip to main content

Advertisement

Log in

Skin Barrier Function and Atopic Dermatitis

  • Atopic Dermatitis (C Vestergaard, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review was to highlight the importance of the skin barrier in the development of atopic dermatitis (AD).

Recent Findings

Skin barrier function relies on the stratum corneum (SC) and tight junction. These components are deranged in the AD epidermis. Deficiency in filaggrin gives rise to abnormal epidermal integrity. The intercellular lipid composition, ratio, and organization are found to be disturbed. Keratinocyte shedding from the SC is also impaired. Tight junction proteins are reduced and result in sweat leakage into the skin surface.

Summary

Strategies to enhance skin barrier strength will alleviate AD symptoms and may prevent the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387(10023):1109–22. https://doi.org/10.1016/s0140-6736(15)00149-x.

    Article  PubMed  Google Scholar 

  2. Wallach D, Taieb A. Atopic dermatitis/atopic eczema. Chem Immunol Allergy. 2014;100:81–96. https://doi.org/10.1159/000358606.

    Article  PubMed  Google Scholar 

  3. Beattie PE, Lewis-Jones MS. A comparative study of impairment of quality of life in children with skin disease and children with other chronic childhood diseases. Br J Dermatol. 2006;155(1):145–51. https://doi.org/10.1111/j.1365-2133.2006.07185.x.

    Article  CAS  PubMed  Google Scholar 

  4. Holm JG, Agner T, Clausen ML, Thomsen SF. Quality of life and disease severity in patients with atopic dermatitis. J Eur Acad Dermatol Venereol. 2016;30(10):1760–7. https://doi.org/10.1111/jdv.13689.

    Article  CAS  PubMed  Google Scholar 

  5. Bieber T. Atopic dermatitis. N Engl J Med. 2008;358(14):1483–94. https://doi.org/10.1056/NEJMra074081.

    Article  CAS  PubMed  Google Scholar 

  6. Alduraywish SA, Lodge CJ, Campbell B, Allen KJ, Erbas B, Lowe AJ, et al. The march from early life food sensitization to allergic disease: a systematic review and meta-analyses of birth cohort studies. Allergy. 2016;71(1):77–89. https://doi.org/10.1111/all.12784.

    Article  CAS  PubMed  Google Scholar 

  7. Saunders SP, Moran T, Floudas A, Wurlod F, Kaszlikowska A, Salimi M, et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J Allergy Clin Immunol. 2016;137(2):482–91. https://doi.org/10.1016/j.jaci.2015.06.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee HJ, Lee NR, Kim BK, Jung M, Kim DH, Moniaga CS, et al. Acidification of stratum corneum prevents the progression from atopic dermatitis to respiratory allergy. Exp Dermatol. 2017;26(1):66–72. https://doi.org/10.1111/exd.13144.

    Article  CAS  PubMed  Google Scholar 

  9. •• Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1. https://doi.org/10.1038/s41572-018-0001-z. This article briefly summarizes the overview in every aspect of atopic dermatitis.

    Article  PubMed  Google Scholar 

  10. Tang TS, Bieber T, Williams HC. Does “autoreactivity” play a role in atopic dermatitis? J Allergy Clin Immunol. 2012;129(5):1209–15.e2. https://doi.org/10.1016/j.jaci.2012.02.002.

    Article  PubMed  Google Scholar 

  11. Nygaard U, Riis JL, Deleuran M, Vestergaard C. Attention-deficit/hyperactivity disorder in atopic dermatitis: an appraisal of the current literature. Pediatric Allergy, Immunology, and Pulmonology. 2016;29(4):181–8. https://doi.org/10.1089/ped.2016.0705.

    Article  Google Scholar 

  12. Schmitt J, Schwarz K, Baurecht H, Hotze M, Folster-Holst R, Rodriguez E, et al. Atopic dermatitis is associated with an increased risk for rheumatoid arthritis and inflammatory bowel disease, and a decreased risk for type 1 diabetes. J Allergy Clin Immunol. 2016;137(1):130–6. https://doi.org/10.1016/j.jaci.2015.06.029.

    Article  PubMed  Google Scholar 

  13. Andersen YM, Egeberg A, Gislason GH, Skov L, Thyssen JP. Autoimmune diseases in adults with atopic dermatitis. J Am Acad Dermatol. 2017;76(2):274–80.e1. https://doi.org/10.1016/j.jaad.2016.08.047.

    Article  PubMed  Google Scholar 

  14. Mohan GC, Silverberg JI. Association of vitiligo and alopecia areata with atopic dermatitis: a systematic review and meta-analysis. JAMA Dermatol. 2015;151(5):522–8. https://doi.org/10.1001/jamadermatol.2014.3324.

    Article  PubMed  Google Scholar 

  15. Andersen YMF, Egeberg A, Skov L, Thyssen JP. Comorbidities of atopic dermatitis: beyond rhinitis and asthma. Curr Dermatol Rep. 2017;6(1):35–41. https://doi.org/10.1007/s13671-017-0168-7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rerknimitr P, Otsuka A, Nakashima C, Kabashima K. The etiopathogenesis of atopic dermatitis: barrier disruption, immunological derangement, and pruritus. Inflamm Regen. 2017;37:14. https://doi.org/10.1186/s41232-017-0044-7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Otsuka A, Nomura T, Rerknimitr P, Seidel JA, Honda T, Kabashima K. The interplay between genetic and environmental factors in the pathogenesis of atopic dermatitis. Immunol Rev. 2017;278(1):246–62. https://doi.org/10.1111/imr.12545.

    Article  CAS  PubMed  Google Scholar 

  18. Matsui T, Amagai M. Dissecting the formation, structure and barrier function of the stratum corneum. Int Immunol. 2015;27(6):269–80. https://doi.org/10.1093/intimm/dxv013.

    Article  CAS  PubMed  Google Scholar 

  19. Egawa G, Kabashima K. Barrier dysfunction in the skin allergy. Allergol Int. 2018;67(1):3–11. https://doi.org/10.1016/j.alit.2017.10.002.

    Article  PubMed  Google Scholar 

  20. Wallace L, Roberts-Thompson L, Reichelt J. Deletion of K1/K10 does not impair epidermal stratification but affects desmosomal structure and nuclear integrity. J Cell Sci. 2012;125(Pt 7):1750–8. https://doi.org/10.1242/jcs.097139.

    Article  CAS  PubMed  Google Scholar 

  21. Egawa G, Kabashima K. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march. J Allergy Clin Immunol. 2016;138(2):350–8.e1. https://doi.org/10.1016/j.jaci.2016.06.002.

    Article  PubMed  Google Scholar 

  22. Leyvraz C, Charles RP, Rubera I, Guitard M, Rotman S, Breiden B, et al. The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol. 2005;170(3):487–96. https://doi.org/10.1083/jcb.200501038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsui T, Miyamoto K, Kubo A, Kawasaki H, Ebihara T, Hata K, et al. SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. EMBO Mol Med. 2011;3(6):320–33. https://doi.org/10.1002/emmm.201100140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Egawa G, Doi H, Miyachi Y, Kabashima K. Skin tape stripping and cheek swab method for a detection of filaggrin. J Dermatol Sci. 2013;69(3):263–5. https://doi.org/10.1016/j.jdermsci.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  25. Nachat R, Mechin MC, Takahara H, Chavanas S, Charveron M, Serre G, et al. Peptidylarginine deiminase isoforms 1-3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin. J Invest Dermatol. 2005;124(2):384–93. https://doi.org/10.1111/j.0022-202X.2004.23568.x.

    Article  CAS  PubMed  Google Scholar 

  26. Scharschmidt TC, List K, Grice EA, Szabo R, Renaud G, Lee CC, et al. Matriptase-deficient mice exhibit ichthyotic skin with a selective shift in skin microbiota. J Invest Dermatol. 2009;129(10):2435–42. https://doi.org/10.1038/jid.2009.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Manabe M, Sanchez M, Sun TT, Dale BA. Interaction of filaggrin with keratin filaments during advanced stages of normal human epidermal differentiation and in ichthyosis vulgaris. Differentiation. 1991;48(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  28. Simonsen S, Thyssen JP, Heegaard S, Kezic S, Skov L. Expression of filaggrin and its degradation products in human skin following erythemal doses of ultraviolet B irradiation. Acta Derm Venereol. 2017;97(7):797–801. https://doi.org/10.2340/00015555-2662.

    Article  CAS  PubMed  Google Scholar 

  29. Gibbs NK, Tye J, Norval M. Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem Photobiol Sci. 2008;7(6):655–67. https://doi.org/10.1039/b717398a.

    Article  CAS  PubMed  Google Scholar 

  30. Hoste E, Kemperman P, Devos M, Denecker G, Kezic S, Yau N, et al. Caspase-14 is required for filaggrin degradation to natural moisturizing factors in the skin. J Invest Dermatol. 2011;131(11):2233–41. https://doi.org/10.1038/jid.2011.153.

    Article  CAS  PubMed  Google Scholar 

  31. Kamata Y, Taniguchi A, Yamamoto M, Nomura J, Ishihara K, Takahara H, et al. Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. J Biol Chem. 2009;284(19):12829–36. https://doi.org/10.1074/jbc.M807908200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kalinin A, Marekov LN, Steinert PM. Assembly of the epidermal cornified cell envelope. J Cell Sci. 2001;114(Pt 17):3069–70.

    CAS  PubMed  Google Scholar 

  33. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol. 2005;6(4):328–40. https://doi.org/10.1038/nrm1619.

    Article  CAS  PubMed  Google Scholar 

  34. Candi E, Tarcsa E, Idler WW, Kartasova T, Marekov LN, Steinert PM. Transglutaminase cross-linking properties of the small proline-rich 1 family of cornified cell envelope proteins. Integration with loricrin. J Biol Chem. 1999;274(11):7226–37.

    Article  CAS  PubMed  Google Scholar 

  35. Feingold KR. Lamellar bodies: the key to cutaneous barrier function. J Invest Dermatol. 2012;132(8):1951–3. https://doi.org/10.1038/jid.2012.177.

    Article  CAS  PubMed  Google Scholar 

  36. Menon GK, Feingold KR, Elias PM. Lamellar body secretory response to barrier disruption. J Invest Dermatol. 1992;98(3):279–89.

    Article  CAS  PubMed  Google Scholar 

  37. Proksch E, Holleran WM, Menon GK, Elias PM, Feingold KR. Barrier function regulates epidermal lipid and DNA synthesis. Br J Dermatol. 1993;128(5):473–82.

    Article  CAS  PubMed  Google Scholar 

  38. Cui L, Jia Y, Cheng ZW, Gao Y, Zhang GL, Li JY, et al. Advancements in the maintenance of skin barrier/skin lipid composition and the involvement of metabolic enzymes. J Cosmet Dermatol. 2016;15(4):549–58. https://doi.org/10.1111/jocd.12245.

    Article  PubMed  Google Scholar 

  39. Han X. Lipidomics for studying metabolism. Nat Rev Endocrinol. 2016;12(11):668–79. https://doi.org/10.1038/nrendo.2016.98.

    Article  CAS  PubMed  Google Scholar 

  40. Ansari MN, Nicolaides N, Fu HC. Fatty acid composition of the living layer and stratum corneum lipids of human sole skin epidermis. Lipids. 1970;5(10):838–45.

    Article  CAS  PubMed  Google Scholar 

  41. Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta. 2014;1841(3):280–94. https://doi.org/10.1016/j.bbalip.2013.11.007.

    Article  CAS  PubMed  Google Scholar 

  42. Jia Y, Gan Y, He C, Chen Z, Zhou C. The mechanism of skin lipids influencing skin status. J Dermatol Sci. 2018;89(2):112–9. https://doi.org/10.1016/j.jdermsci.2017.11.006.

    Article  CAS  PubMed  Google Scholar 

  43. van Smeden J, Bouwstra JA. Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr Probl Dermatol. 2016;49:8–26. https://doi.org/10.1159/000441540.

    Article  PubMed  Google Scholar 

  44. Ishida-Yamamoto A, Igawa S, Kishibe M. Molecular basis of the skin barrier structures revealed by electron microscopy. Exp Dermatol. 2018;8:841–46. https://doi.org/10.1111/exd.13674.

    Article  CAS  PubMed  Google Scholar 

  45. Lundstrom A, Serre G, Haftek M, Egelrud T. Evidence for a role of corneodesmosin, a protein which may serve to modify desmosomes during cornification, in stratum corneum cell cohesion and desquamation. Arch Dermatol Res. 1994;286(7):369–75.

    Article  CAS  PubMed  Google Scholar 

  46. Brattsand M, Stefansson K, Lundh C, Haasum Y, Egelrud T. A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol. 2005;124(1):198–203. https://doi.org/10.1111/j.0022-202X.2004.23547.x.

    Article  CAS  PubMed  Google Scholar 

  47. Lundstrom A, Egelrud T. Stratum corneum chymotryptic enzyme: a proteinase which may be generally present in the stratum corneum and with a possible involvement in desquamation. Acta Derm Venereol. 1991;71(6):471–4.

    CAS  PubMed  Google Scholar 

  48. Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell. 2007;18(9):3607–19. https://doi.org/10.1091/mbc.E07-02-0124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kirschner N, Houdek P, Fromm M, Moll I, Brandner JM. Tight junctions form a barrier in human epidermis. Eur J Cell Biol. 2010;89(11):839–42. https://doi.org/10.1016/j.ejcb.2010.07.010.

    Article  CAS  PubMed  Google Scholar 

  50. Brandner JM, Kief S, Grund C, Rendl M, Houdek P, Kuhn C, et al. Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol. 2002;81(5):253–63. https://doi.org/10.1078/0171-9335-00244.

    Article  CAS  PubMed  Google Scholar 

  51. Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol. 2007;127(11):2525–32. https://doi.org/10.1038/sj.jid.5700865.

    Article  CAS  PubMed  Google Scholar 

  52. • Yokouchi M, Atsugi T, Logtestijn MV, Tanaka RJ, Kajimura M, Suematsu M et al. Epidermal cell turnover across tight junctions based on Kelvin's tetrakaidecahedron cell shape. Elife. 2016;5:e19593. https://doi.org/10.7554/eLife.19593. This article depicted 3D structure of the epidermis in relation to the tight junction.

  53. Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 2009;206(13):2937–46. https://doi.org/10.1084/jem.20091527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoshida K, Kubo A, Fujita H, Yokouchi M, Ishii K, Kawasaki H, et al. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):856–64. https://doi.org/10.1016/j.jaci.2014.08.001.

    Article  PubMed  Google Scholar 

  55. Nakajima S, Igyarto BZ, Honda T, Egawa G, Otsuka A, Hara-Chikuma M, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol. 2012;129(4):1048–55.e6. https://doi.org/10.1016/j.jaci.2012.01.063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol. 2014;14(6):417–28. https://doi.org/10.1038/nri3683.

    Article  CAS  PubMed  Google Scholar 

  57. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6. https://doi.org/10.1038/ng1767.

    Article  CAS  PubMed  Google Scholar 

  58. Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315–27. https://doi.org/10.1056/NEJMra1011040.

    Article  CAS  PubMed  Google Scholar 

  59. Cai SC, Chen H, Koh WP, Common JE, van Bever HP, McLean WH, et al. Filaggrin mutations are associated with recurrent skin infection in Singaporean Chinese patients with atopic dermatitis. Br J Dermatol. 2012;166(1):200–3. https://doi.org/10.1111/j.1365-2133.2011.10541.x.

    Article  CAS  PubMed  Google Scholar 

  60. Moniaga CS, Egawa G, Kawasaki H, Hara-Chikuma M, Honda T, Tanizaki H, et al. Flaky tail mouse denotes human atopic dermatitis in the steady state and by topical application with Dermatophagoides pteronyssinus extract. Am J Pathol. 2010;176(5):2385–93. https://doi.org/10.2353/ajpath.2010.090957.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Moniaga CS, Kabashima K. Filaggrin in atopic dermatitis: flaky tail mice as a novel model for developing drug targets in atopic dermatitis. Inflamm Allergy Drug Targets. 2011;10(6):477–85.

    Article  CAS  PubMed  Google Scholar 

  62. Ewald DA, Noda S, Oliva M, Litman T, Nakajima S, Li X, et al. Major differences between human atopic dermatitis and murine models, as determined by using global transcriptomic profiling. J Allergy Clin Immunol. 2016;139:562–71. https://doi.org/10.1016/j.jaci.2016.08.029.

    Article  CAS  PubMed  Google Scholar 

  63. Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A, Mizuno H, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129(6):1538–46.e6. https://doi.org/10.1016/j.jaci.2012.01.068.

    Article  CAS  PubMed  Google Scholar 

  64. Fallon PG, Sasaki T, Sandilands A, Campbell LE, Saunders SP, Mangan NE, et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat Genet. 2009;41(5):602–8. https://doi.org/10.1038/ng.358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jeong SK, Kim HJ, Youm JK, Ahn SK, Choi EH, Sohn MH, et al. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Invest Dermatol. 2008;128(8):1930–9. https://doi.org/10.1038/jid.2008.13.

    Article  CAS  PubMed  Google Scholar 

  66. Otsuka A, Doi H, Egawa G, Maekawa A, Fujita T, Nakamizo S, et al. Possible new therapeutic strategy to regulate atopic dermatitis through upregulating filaggrin expression. J Allergy Clin Immunol. 2014;133(1):139–46. e1–10. https://doi.org/10.1016/j.jaci.2013.07.027.

    Article  CAS  PubMed  Google Scholar 

  67. Brown SJ, McLean WH. One remarkable molecule: filaggrin. J Invest Dermatol. 2012;132(3 Pt 2):751–62. https://doi.org/10.1038/jid.2011.393.

    Article  CAS  PubMed  Google Scholar 

  68. Thyssen JP, Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):792–9. https://doi.org/10.1016/j.jaci.2014.06.014.

    Article  CAS  PubMed  Google Scholar 

  69. Pendaries V, Malaisse J, Pellerin L, Le Lamer M, Nachat R, Kezic S, et al. Knockdown of filaggrin in a three-dimensional reconstructed human epidermis impairs keratinocyte differentiation. J Invest Dermatol. 2014;134(12):2938–46. https://doi.org/10.1038/jid.2014.259.

    Article  CAS  PubMed  Google Scholar 

  70. Gruber R, Elias PM, Crumrine D, Lin TK, Brandner JM, Hachem JP, et al. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function. Am J Pathol. 2011;178(5):2252–63. https://doi.org/10.1016/j.ajpath.2011.01.053.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126(6):1184–90. e3. https://doi.org/10.1016/j.jaci.2010.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mildner M, Jin J, Eckhart L, Kezic S, Gruber F, Barresi C, et al. Knockdown of filaggrin impairs diffusion barrier function and increases UV sensitivity in a human skin model. J Invest Dermatol. 2010;130(9):2286–94. https://doi.org/10.1038/jid.2010.115.

    Article  CAS  PubMed  Google Scholar 

  73. Scharschmidt TC, Man MQ, Hatano Y, Crumrine D, Gunathilake R, Sundberg JP, et al. Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. J Allergy Clin Immunol. 2009;124(3):496–506, .e1-6. https://doi.org/10.1016/j.jaci.2009.06.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brauweiler AM, Bin L, Kim BE, Oyoshi MK, Geha RS, Goleva E, et al. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal alpha-toxin-induced keratinocyte death. J Allergy Clin Immunol. 2013;131(2):421–7. e1–2. https://doi.org/10.1016/j.jaci.2012.10.030.

    Article  CAS  PubMed  Google Scholar 

  75. Matsui S, Murota H, Takahashi A, Yang L, Lee JB, Omiya K, et al. Dynamic analysis of histamine-mediated attenuation of acetylcholine-induced sweating via GSK3beta activation. J Invest Dermatol. 2014;134(2):326–34. https://doi.org/10.1038/jid.2013.323.

    Article  CAS  PubMed  Google Scholar 

  76. Murota H, Matsui S, Ono E, Kijima A, Kikuta J, Ishii M, et al. Sweat, the driving force behind normal skin: an emerging perspective on functional biology and regulatory mechanisms. J Dermatol Sci. 2015;77(1):3–10. https://doi.org/10.1016/j.jdermsci.2014.08.011.

    Article  CAS  PubMed  Google Scholar 

  77. Rerknimitr P, Tanizaki H, Yamamoto Y, Amano W, Nakajima S, Nakashima C, et al. Decreased filaggrin level may lead to sweat duct obstruction in filaggrin mutant mice. J Invest Dermatol. 2016;137:248–51. https://doi.org/10.1016/j.jid.2016.07.036.

    Article  CAS  PubMed  Google Scholar 

  78. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120(1):150–5. https://doi.org/10.1016/j.jaci.2007.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim BE, Leung DY, Boguniewicz M, Howell MD. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126(3):332–7. https://doi.org/10.1016/j.clim.2007.11.006.

    Article  CAS  PubMed  Google Scholar 

  80. Amano W, Nakajima S, Kunugi H, Numata Y, Kitoh A, Egawa G, et al. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J Allergy Clin Immunol. 2015;136(3):667–77. e7. https://doi.org/10.1016/j.jaci.2015.03.051.

    Article  CAS  PubMed  Google Scholar 

  81. Hvid M, Vestergaard C, Kemp K, Christensen GB, Deleuran B, Deleuran M. IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction? J Invest Dermatol. 2011;131(1):150–7. https://doi.org/10.1038/jid.2010.277.

    Article  CAS  PubMed  Google Scholar 

  82. Nygaard U, van den Bogaard EH, Niehues H, Hvid M, Deleuran M, Johansen C, et al. The “Alarmins” HMBG1 and IL-33 downregulate structural skin barrier proteins and impair epidermal growth. Acta Derm Venereol. 2017;97(3):305–12. https://doi.org/10.2340/00015555-2552.

    Article  CAS  PubMed  Google Scholar 

  83. Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Luscher-Firzlaff J, et al. IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol. 2012;129(2):426–33, 33.e1–8. https://doi.org/10.1016/j.jaci.2011.10.042.

    Article  CAS  PubMed  Google Scholar 

  84. Huth S, Schmitt L, Marquardt Y, Heise R, Luscher B, Amann PM et al. Effects of a ceramide-containing water-in-oil ointment on skin barrier function and allergen penetration in an IL-31 treated 3D model of the disrupted skin barrier. Exp Dermatol 2018;9:1009–14. https://doi.org/10.1111/exd.13697.

    Article  CAS  PubMed  Google Scholar 

  85. Ishikawa J, Narita H, Kondo N, Hotta M, Takagi Y, Masukawa Y, et al. Changes in the ceramide profile of atopic dermatitis patients. J Invest Dermatol. 2010;130(10):2511–4. https://doi.org/10.1038/jid.2010.161.

    Article  CAS  PubMed  Google Scholar 

  86. Meckfessel MH, Brandt S. The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products. J Am Acad Dermatol. 2014;71(1):177–84. https://doi.org/10.1016/j.jaad.2014.01.891.

    Article  CAS  PubMed  Google Scholar 

  87. Janssens M, van Smeden J, Gooris GS, Bras W, Portale G, Caspers PJ, et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J Lipid Res. 2012;53(12):2755–66. https://doi.org/10.1194/jlr.P030338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol. 1991;96(4):523–6.

    Article  CAS  PubMed  Google Scholar 

  89. Yamamoto A, Serizawa S, Ito M, Sato Y. Stratum corneum lipid abnormalities in atopic dermatitis. Arch Dermatol Res. 1991;283(4):219–23.

    Article  CAS  PubMed  Google Scholar 

  90. Farwanah H, Raith K, Neubert RH, Wohlrab J. Ceramide profiles of the uninvolved skin in atopic dermatitis and psoriasis are comparable to those of healthy skin. Arch Dermatol Res. 2005;296(11):514–21. https://doi.org/10.1007/s00403-005-0551-2.

    Article  CAS  PubMed  Google Scholar 

  91. Angelova-Fischer I, Mannheimer AC, Hinder A, Ruether A, Franke A, Neubert RH, et al. Distinct barrier integrity phenotypes in filaggrin-related atopic eczema following sequential tape stripping and lipid profiling. Exp Dermatol. 2011;20(4):351–6. https://doi.org/10.1111/j.1600-0625.2011.01259.x.

    Article  PubMed  Google Scholar 

  92. Di Nardo A, Wertz P, Giannetti A, Seidenari S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol. 1998;78(1):27–30.

    Article  PubMed  Google Scholar 

  93. Bleck O, Abeck D, Ring J, Hoppe U, Vietzke JP, Wolber R, et al. Two ceramide subfractions detectable in Cer (AS) position by HPTLC in skin surface lipids of non-lesional skin of atopic eczema. J Invest Dermatol. 1999;113(6):894–900. https://doi.org/10.1046/j.1523-1747.1999.00809.x.

    Article  CAS  PubMed  Google Scholar 

  94. van Smeden J, Janssens M, Kaye EC, Caspers PJ, Lavrijsen AP, Vreeken RJ, et al. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp Dermatol. 2014;23(1):45–52. https://doi.org/10.1111/exd.12293.

    Article  CAS  PubMed  Google Scholar 

  95. Tawada C, Kanoh H, Nakamura M, Mizutani Y, Fujisawa T, Banno Y, et al. Interferon-gamma decreases ceramides with long-chain fatty acids: possible involvement in atopic dermatitis and psoriasis. J Invest Dermatol. 2014;134(3):712–8. https://doi.org/10.1038/jid.2013.364.

    Article  CAS  PubMed  Google Scholar 

  96. Berdyshev E, Goleva E, Bronova I, Dyjack N, Rios C, Jung J et al. Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight. 2018;3(4). https://doi.org/10.1172/jci.insight.98006.

  97. Macheleidt O, Kaiser HW, Sandhoff K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J Invest Dermatol. 2002;119(1):166–73. https://doi.org/10.1046/j.1523-1747.2002.01833.x.

    Article  CAS  PubMed  Google Scholar 

  98. Park YH, Jang WH, Seo JA, Park M, Lee TR, Park YH, et al. Decrease of ceramides with very long-chain fatty acids and downregulation of elongases in a murine atopic dermatitis model. J Invest Dermatol. 2012;132(2):476–9. https://doi.org/10.1038/jid.2011.333.

    Article  CAS  PubMed  Google Scholar 

  99. Sasaki T, Shiohama A, Kubo A, Kawasaki H, Ishida-Yamamoto A, Yamada T, et al. A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis. J Allergy Clin Immunol. 2013;132(5):1111–20. e4. https://doi.org/10.1016/j.jaci.2013.08.027.

    Article  CAS  PubMed  Google Scholar 

  100. Saunders SP, Goh CS, Brown SJ, Palmer CN, Porter RM, Cole C, et al. Tmem79/Matt is the matted mouse gene and is a predisposing gene for atopic dermatitis in human subjects. J Allergy Clin Immunol. 2013;132(5):1121–9. https://doi.org/10.1016/j.jaci.2013.08.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. • Brunner PM, Israel A, Zhang N, Leonard A, Wen HC, Huynh T, et al. Early-onset pediatric atopic dermatitis is characterized by TH2/TH17/TH22-centered inflammation and lipid alterations. J Allergy Clin Immunol. 2018;141(6):2094–106. https://doi.org/10.1016/j.jaci.2018.02.040. This article compares and contrasts the features of pediatric and adult atopic dermatitis. The differences in epidermal deraangement are of interest.

    Article  CAS  PubMed  Google Scholar 

  102. Danso M, Boiten W, van Drongelen V, Gmelig Meijling K, Gooris G, El Ghalbzouri A, et al. Altered expression of epidermal lipid bio-synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition. J Dermatol Sci. 2017;88(1):57–66. https://doi.org/10.1016/j.jdermsci.2017.05.005.

    Article  CAS  PubMed  Google Scholar 

  103. Danso MO, van Drongelen V, Mulder A, van Esch J, Scott H, van Smeden J, et al. TNF-alpha and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. J Invest Dermatol. 2014;134(7):1941–50. https://doi.org/10.1038/jid.2014.83.

    Article  CAS  PubMed  Google Scholar 

  104. Jang H, Matsuda A, Jung K, Karasawa K, Matsuda K, Oida K, et al. Skin pH is the master switch of kallikrein 5-mediated skin barrier destruction in a murine atopic dermatitis model. J Invest Dermatol. 2016;136(1):127–35. https://doi.org/10.1038/jid.2015.363.

    Article  CAS  PubMed  Google Scholar 

  105. Hachem JP, Man MQ, Crumrine D, Uchida Y, Brown BE, Rogiers V, et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol. 2005;125(3):510–20. https://doi.org/10.1111/j.0022-202X.2005.23838.x.

    Article  CAS  PubMed  Google Scholar 

  106. Kezic S, O'Regan GM, Lutter R, Jakasa I, Koster ES, Saunders S, et al. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol. 2012;129(4):1031–9. e1. https://doi.org/10.1016/j.jaci.2011.12.989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med. 2009;206(5):1135–47. https://doi.org/10.1084/jem.20082242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Moniaga CS, Jeong SK, Egawa G, Nakajima S, Hara-Chikuma M, Jeon JE, et al. Protease activity enhances production of thymic stromal lymphopoietin and basophil accumulation in flaky tail mice. Am J Pathol. 2013;182(3):841–51. https://doi.org/10.1016/j.ajpath.2012.11.039.

    Article  CAS  PubMed  Google Scholar 

  109. Vasilopoulos Y, Sharaf N, di Giovine F, Simon M, Cork MJ, Duff GW, et al. The 3'-UTR AACCins5874 in the stratum corneum chymotryptic enzyme gene (SCCE/KLK7), associated with atopic dermatitis; causes an increased mRNA expression without altering its stability. J Dermatol Sci. 2011;61(2):131–3. https://doi.org/10.1016/j.jdermsci.2010.11.013.

    Article  CAS  PubMed  Google Scholar 

  110. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet. 2000;25(2):141–2. https://doi.org/10.1038/75977.

    Article  CAS  PubMed  Google Scholar 

  111. Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B, Lawrence R, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet. 2001;29(2):175–8. https://doi.org/10.1038/ng728.

    Article  CAS  PubMed  Google Scholar 

  112. Zhao LP, Di Z, Zhang L, Wang L, Ma L, Lv Y, et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in northeast China. J Eur Acad Dermatol Venereol. 2012;26(5):572–7. https://doi.org/10.1111/j.1468-3083.2011.04120.x.

    Article  CAS  PubMed  Google Scholar 

  113. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol. 2002;156(6):1099–111. https://doi.org/10.1083/jcb.200110122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol. 2011;127(3):773–86. e1–7. https://doi.org/10.1016/j.jaci.2010.10.018.

    Article  CAS  PubMed  Google Scholar 

  115. Yuki T, Tobiishi M, Kusaka-Kikushima A, Ota Y, Tokura Y. Impaired tight junctions in atopic dermatitis skin and in a skin-equivalent model treated with interleukin-17. PLoS One. 2016;11(9):e0161759. https://doi.org/10.1371/journal.pone.0161759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gruber R, Bornchen C, Rose K, Daubmann A, Volksdorf T, Wladykowski E, et al. Diverse regulation of claudin-1 and claudin-4 in atopic dermatitis. Am J Pathol. 2015;185(10):2777–89. https://doi.org/10.1016/j.ajpath.2015.06.021.

    Article  CAS  PubMed  Google Scholar 

  117. Yuki T, Komiya A, Kusaka A, Kuze T, Sugiyama Y, Inoue S. Impaired tight junctions obstruct stratum corneum formation by altering polar lipid and profilaggrin processing. J Dermatol Sci. 2013;69(2):148–58. https://doi.org/10.1016/j.jdermsci.2012.11.595.

    Article  CAS  PubMed  Google Scholar 

  118. • Yamaga K, Murota H, Tamura A, Miyata H, Ohmi M, Kikuta J, et al. Claudin-3 loss causes leakage of sweat from the sweat gland to contribute to the pathogenesis of atopic dermatitis. J Invest Dermatol. 2018;138(6):1279–87. https://doi.org/10.1016/j.jid.2017.11.040. This article emphasizes the importance of tight junction proteins in sweating.

    Article  CAS  PubMed  Google Scholar 

  119. Kelleher M, Dunn-Galvin A, Hourihane JO, Murray D, Campbell LE, McLean WH, et al. Skin barrier dysfunction measured by transepidermal water loss at 2 days and 2 months predates and predicts atopic dermatitis at 1 year. J Allergy Clin Immunol. 2015;135(4):930–5.e1. https://doi.org/10.1016/j.jaci.2014.12.013.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Simpson EL, Chalmers JR, Hanifin JM, Thomas KS, Cork MJ, McLean WH, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134(4):818–23. https://doi.org/10.1016/j.jaci.2014.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Horimukai K, Morita K, Narita M, Kondo M, Kitazawa H, Nozaki M, et al. Application of moisturizer to neonates prevents development of atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):824–30. e6. https://doi.org/10.1016/j.jaci.2014.07.060.

    Article  PubMed  Google Scholar 

  122. Chalmers JR, Haines RH, Mitchell EJ, Thomas KS, Brown SJ, Ridd M, et al. Effectiveness and cost-effectiveness of daily all-over-body application of emollient during the first year of life for preventing atopic eczema in high-risk children (the BEEP trial): protocol for a randomised controlled trial. Trials. 2017;18(1):343. https://doi.org/10.1186/s13063-017-2031-3.

    Article  PubMed  PubMed Central  Google Scholar 

  123. van Zuuren EJ, Fedorowicz Z, Christensen R, Lavrijsen A, Arents BWM. Emollients and moisturisers for eczema. Cochrane Database Syst Rev. 2017;2:Cd012119. https://doi.org/10.1002/14651858.CD012119.pub2.

    Article  PubMed  Google Scholar 

  124. Grether-Beck S, Felsner I, Brenden H, Kohne Z, Majora M, Marini A, et al. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression. J Invest Dermatol. 2012;132(6):1561–72. https://doi.org/10.1038/jid.2012.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Czarnowicki T, Malajian D, Khattri S, Correa da Rosa J, Dutt R, Finney R, et al. Petrolatum: Barrier repair and antimicrobial responses underlying this “inert” moisturizer. J Allergy Clin Immunol. 2016;137(4):1091–102. e7. https://doi.org/10.1016/j.jaci.2015.08.013.

    Article  CAS  PubMed  Google Scholar 

  126. Kao JS, Fluhr JW, Man MQ, Fowler AJ, Hachem JP, Crumrine D, et al. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J Invest Dermatol. 2003;120(3):456–64. https://doi.org/10.1046/j.1523-1747.2003.12053.x.

    Article  CAS  PubMed  Google Scholar 

  127. Hatano Y, Elias PM, Crumrine D, Feingold KR, Katagiri K, Fujiwara S. Efficacy of combined peroxisome proliferator-activated receptor-alpha ligand and glucocorticoid therapy in a murine model of atopic dermatitis. J Invest Dermatol. 2011;131(9):1845–52. https://doi.org/10.1038/jid.2011.144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee SE, Choi Y, Kim SE, Noh EB, Kim SC. Differential effects of topical corticosteroid and calcineurin inhibitor on the epidermal tight junction. Exp Dermatol. 2013;22(1):59–61. https://doi.org/10.1111/exd.12055.

    Article  CAS  PubMed  Google Scholar 

  129. Jensen JM, Scherer A, Wanke C, Brautigam M, Bongiovanni S, Letzkus M, et al. Gene expression is differently affected by pimecrolimus and betamethasone in lesional skin of atopic dermatitis. Allergy. 2012;67(3):413–23. https://doi.org/10.1111/j.1398-9995.2011.02747.x.

    Article  CAS  PubMed  Google Scholar 

  130. Nygaard U, Deleuran M, Vestergaard C. Emerging treatment options in atopic dermatitis: topical therapies. Dermatology. 2017;233(5):333–43.

    Article  PubMed  Google Scholar 

  131. Danby SG, Chittock J, Brown K, Albenali LH, Cork MJ. The effect of tacrolimus compared with betamethasone valerate on the skin barrier in volunteers with quiescent atopic dermatitis. Br J Dermatol. 2014;170(4):914–21. https://doi.org/10.1111/bjd.12778.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang C, Gurevich I, Aneskievich BJ. Organotypic modeling of human keratinocyte response to peroxisome proliferators. Cells Tissues Organs. 2012;196(5):431–41. https://doi.org/10.1159/000336268.

    Article  CAS  PubMed  Google Scholar 

  133. Kim H, Lim YJ, Park JH, Cho Y. Dietary silk protein, sericin, improves epidermal hydration with increased levels of filaggrins and free amino acids in NC/Nga mice. Br J Nutr. 2012;108(10):1726–35. https://doi.org/10.1017/s0007114511007306.

    Article  CAS  PubMed  Google Scholar 

  134. Hou M, Sun R, Hupe M, Kim PL, Park K, Crumrine D, et al. Topical apigenin improves epidermal permeability barrier homoeostasis in normal murine skin by divergent mechanisms. Exp Dermatol. 2013;22(3):210–5. https://doi.org/10.1111/exd.12102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Elias PM. Primary role of barrier dysfunction in the pathogenesis of atopic dermatitis. Exp Dermatol. 2018;8:847–51. https://doi.org/10.1111/exd.13693.

    Article  CAS  PubMed  Google Scholar 

  136. Man MM, Feingold KR, Thornfeldt CR, Elias PM. Optimization of physiological lipid mixtures for barrier repair. J Invest Dermatol. 1996;106(5):1096–101.

    Article  Google Scholar 

  137. Paller AS, Kabashima K, Bieber T. Therapeutic pipeline for atopic dermatitis: end of the drought? J Allergy Clin Immunol. 2017;140(3):633–43. https://doi.org/10.1016/j.jaci.2017.07.006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author, PR, thanks the Skin and Allergy Research Unit of Chulalongkorn University for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atsushi Otsuka or Kenji Kabashima.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Atopic Dermatitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rerknimitr, P., Otsuka, A., Nakashima, C. et al. Skin Barrier Function and Atopic Dermatitis. Curr Derm Rep 7, 209–220 (2018). https://doi.org/10.1007/s13671-018-0232-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-018-0232-y

Keywords

Navigation