Skip to main content

Advertisement

Log in

Fibrotic Signaling Pathways of Skin Fibroblasts in Nephrogenic Systemic Fibrosis

  • Dermatology and Wound Care (C Sayed, Section Editor)
  • Published:
Current Geriatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The focus of this article is to describe the etiology, clinical presentation, treatment, and molecular signaling mechanisms involved in the dermatological manifestations of nephrogenic systemic fibrosis (NSF).

Recent Findings

The pathogenesis of NSF involves the recruitment of fibrocytes to tissue where they differentiate into the pro-fibrotic myofibroblast phenotype involved in collagen deposition. This review focuses on the different pro-fibrotic molecular signaling pathways of fibroblasts that mediate skin fibrosis in NSF.

Summary

This article provides an overview of the clinical presentation and treatment of NSF, with an in depth review of the signaling pathways of fibroblasts associated with the development of skin fibrosis in NSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356(9234):1000–1.

    CAS  Google Scholar 

  2. Grobner T. Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–8.

    CAS  Google Scholar 

  3. Hope TA, Herfkens RJ, Denianke KS, LeBoit PE, Hung Y-Y, Weil E. Nephrogenic systemic fibrosis in patients with chronic kidney disease who received gadopentetate dimeglumine. Investig Radiol. 2009;44(3):135–9.

    CAS  Google Scholar 

  4. Khurana A, Runge VM, Narayanan M, Greene JF, Nickel AE. Nephrogenic systemic fibrosis: a review of 6 cases temporally related to gadodiamide injection (omniscan). Investig Radiol. 2007;42(2):139–45.

    Google Scholar 

  5. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17(9):2359–62.

    PubMed  Google Scholar 

  6. Rydahl C, Thomsen HS, Marckmann P. High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Investig Radiol. 2008;43(2):141–4.

    CAS  Google Scholar 

  7. Swartz RD, Crofford LJ, Phan SH, Ike RW, Su LD. Nephrogenic fibrosing dermopathy: a novel cutaneous fibrosing disorder in patients with renal failure. Am J Med. 2003;114(7):563–72.

    PubMed  Google Scholar 

  8. Yerram P, Saab G, Karuparthi PR, Hayden MR, Khanna R. Nephrogenic systemic fibrosis: a mysterious disease in patients with renal failure--role of gadolinium-based contrast media in causation and the beneficial effect of intravenous sodium thiosulfate. Clin J Am Soc Nephrol. 2007;2(2):258–63.

    CAS  PubMed  Google Scholar 

  9. Wahba IM, Simpson EL, White K. Gadolinium is not the only trigger for nephrogenic systemic fibrosis: insights from two cases and review of the recent literature. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2007;7(10):2425–32.

    CAS  Google Scholar 

  10. • Lohani S, Golenbiewski J, Swami A, Halalau A. A unique case of nephrogenic systemic fibrosis from gadolinium exposure in a patient with normal eGFR. BMJ Case Rep. 2017 ;2017. This publication demonstrates a case of NSF in a patient with normal kidney function, thus highlighting the importance of recognizing systemic and dermatological manifestations of NSF in all patient populations.

  11. Mackay-Wiggan JM, Cohen DJ, Hardy MA, Knobler EH, Grossman ME. Nephrogenic fibrosing dermopathy (scleromyxedema-like illness of renal disease). J Am Acad Dermatol. 2003;48(1):55–60.

    PubMed  Google Scholar 

  12. Cowper SE, Su LD, Bhawan J, Robin HS, LeBoit PE. Nephrogenic fibrosing dermopathy. Am J Dermatopathol. 2001;23(5):383–93.

    CAS  PubMed  Google Scholar 

  13. Cowper SE, Bucala R. Nephrogenic fibrosing dermopathy: suspect identified, motive unclear. Am J Dermatopathol. 2003;25(4):358.

    PubMed  Google Scholar 

  14. Baron PW, Cantos K, Hillebrand DJ, Hu K-Q, Ojogho ON, Nehlsen-Cannarella S, et al. Nephrogenic fibrosing dermopathy after liver transplantation successfully treated with plasmapheresis. Am J Dermatopathol. 2003;25(3):204–9.

    PubMed  Google Scholar 

  15. Centers for Disease Control and Prevention (CDC). Fibrosing skin condition among patients with renal disease--United States and Europe, 1997-2002. MMWR Morb Mortal Wkly Rep. 2002;51(2):25–6.

    Google Scholar 

  16. Cowper SE. Nephrogenic fibrosing dermopathy: the first 6 years. Curr Opin Rheumatol. 2003;15(6):785–90.

    PubMed  Google Scholar 

  17. Golding LP, Provenzale JM. Nephrogenic systemic fibrosis: possible association with a predisposing infection. AJR Am J Roentgenol. 2008;190(4):1069–75.

    PubMed  Google Scholar 

  18. Hope TA, High WA, Leboit PE, Chaopathomkul B, Rogut VS, Herfkens RJ, et al. Nephrogenic systemic fibrosis in rats treated with erythropoietin and intravenous iron. Radiology. 2009;253(2):390–8.

    PubMed  Google Scholar 

  19. Swaminathan S, Ahmed I, McCarthy JT, Albright RC, Pittelkow MR, Caplice NM, et al. Nephrogenic fibrosing dermopathy and high-dose erythropoietin therapy. Ann Intern Med. 2006;145(3):234–5.

    PubMed  Google Scholar 

  20. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1(1):71–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiménez SA, Artlett CM, Sandorfi N, Derk C, Latinis K, Sawaya H, et al. Dialysis-associated systemic fibrosis (nephrogenic fibrosing dermopathy): study of inflammatory cells and transforming growth factor beta1 expression in affected skin. Arthritis Rheum. 2004;50(8):2660–6.

    PubMed  Google Scholar 

  22. Perazella MA. Tissue deposition of gadolinium and development of NSF: a convergence of factors. Semin Dial. 2008;21(2):150–4.

    PubMed  Google Scholar 

  23. Wermuth PJ, Del Galdo F, Jiménez SA. Induction of the expression of profibrotic cytokines and growth factors in normal human peripheral blood monocytes by gadolinium contrast agents. Arthritis Rheum. 2009;60(5):1508–18.

    PubMed  PubMed Central  Google Scholar 

  24. Steger-Hartmann T, Raschke M, Riefke B, Pietsch H, Sieber MA, Walter J. The involvement of pro-inflammatory cytokines in nephrogenic systemic fibrosis - a mechanistic hypothesis based on preclinical results from a rat model treated with gadodiamide. Exp Toxicol Pathol. 2009;61(6):537–52.

    CAS  PubMed  Google Scholar 

  25. Wermuth PJ, Jimenez SA. Gadolinium compounds signaling through TLR4 and TLR7 in normal human macrophages: establishment of a proinflammatory phenotype and implications for the pathogenesis of nephrogenic systemic fibrosis. J Immunol. 2012;189(1):318–27.

    CAS  PubMed  Google Scholar 

  26. Edward M, Quinn JA, Mukherjee S, Jensen M-BV, Jardine AG, Mark PB, et al. Gadodiamide contrast agent “activates” fibroblasts: a possible cause of nephrogenic systemic fibrosis. J Pathol. 2008;214(5):584–93.

    CAS  PubMed  Google Scholar 

  27. Sakai N, Wada T, Furuichi K, Shimizu K, Kokubo S, Hara A, et al. MCP-1/CCR2-dependent loop for fibrogenesis in human peripheral CD14-positive monocytes. J Leukoc Biol. 2006;79(3):555–63.

    CAS  PubMed  Google Scholar 

  28. •• Do C, Drel V, Tan C, Lee D, Wagner B. “Nephrogenic” systemic fibrosis is mediated by myeloid C-C chemokine receptor 2. J Invest Dermatol. 2019; This manuscript provides an insight into the mechanism of the pathogenesis of NSF. Using a mouse model deficient in CCR2, the authors are able to demonstrate that fibrocytes are involved in the dermal proliferation associated gadolinium based contrast agents.

  29. Blakaj A, Bucala R. Fibrocytes in health and disease. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S6.

    PubMed  PubMed Central  Google Scholar 

  30. Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep. 2006;8(2):145–50.

    CAS  PubMed  Google Scholar 

  31. Verrecchia F, Mauviel A. Transforming growth factor-beta and fibrosis. World J Gastroenterol. 2007;13(22):3056–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Collidge TA, Thomson PC, Mark PB, Traynor JP, Jardine AG, Morris STW, et al. Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology. 2007;245(1):168–75.

    PubMed  Google Scholar 

  33. Do JG, Kim YB, Lee DG, Hwang JH. A case of delayed onset nephrogenic systemic fibrosis after gadolinium based contrast injection. Ann Rehabil Med. 2012;36(6):880–6.

    PubMed  PubMed Central  Google Scholar 

  34. Mendoza FA, Artlett CM, Sandorfi N, Latinis K, Piera-Velazquez S, Jimenez SA. Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum. 2006;35(4):238–49.

    PubMed  PubMed Central  Google Scholar 

  35. Galan A, Cowper SE, Bucala R. Nephrogenic systemic fibrosis (nephrogenic fibrosing dermopathy). Curr Opin Rheumatol. 2006;18(6):614–7.

    PubMed  Google Scholar 

  36. Marckmann P, Skov L, Rossen K, Thomsen HS. Clinical manifestation of gadodiamide-related nephrogenic systemic fibrosis. Clin Nephrol. 2008;69(3):161–8.

    CAS  PubMed  Google Scholar 

  37. •• Knobler R, Moinzadeh P, Hunzelmann N, Kreuter A, Cozzio A, Mouthon L, et al. European dermatology forum S1-guideline on the diagnosis and treatment of sclerosing diseases of the skin, Part 2: Scleromyxedema, scleredema and nephrogenic systemic fibrosis. J Eur Acad Dermatol Venereol. 2017;31(10):1581–94 This publication summarizes current guidelines to the recognition and diagnosis of dermatological manifestations of NSF.

    CAS  PubMed  Google Scholar 

  38. Daram SR, Cortese CM, Bastani B. Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: report of a new case with literature review. Am J Kidney Dis. 2005;46(4):754–9.

    PubMed  Google Scholar 

  39. Bangsgaard N, Marckmann P, Rossen K, Skov L. Nephrogenic systemic fibrosis: late skin manifestations. Arch Dermatol. 2009;145(2):183–7.

    PubMed  Google Scholar 

  40. Knopp EA, Cowper SE. Nephrogenic systemic fibrosis: early recognition and treatment. Semin Dial. 2008;21(2):123–8.

    PubMed  Google Scholar 

  41. Introcaso CE, Hivnor C, Cowper S, Werth VP. Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: a case series of nine patients and review of the literature. Int J Dermatol. 2007;46(5):447–52.

    PubMed  Google Scholar 

  42. Levine JM, Taylor RA, Elman LB, Bird SJ, Lavi E, Stolzenberg ED, et al. Involvement of skeletal muscle in dialysis-associated systemic fibrosis (nephrogenic fibrosing dermopathy). Muscle Nerve. 2004;30(5):569–77.

    PubMed  Google Scholar 

  43. Gibson SE, Farver CF, Prayson RA. Multiorgan involvement in nephrogenic fibrosing dermopathy: an autopsy case and review of the literature. Arch Pathol Lab Med. 2006;130(2):209–12.

    PubMed  Google Scholar 

  44. Panesar M, Banerjee S, Barone GW. Clinical improvement of nephrogenic systemic fibrosis after kidney transplantation. Clin Transpl. 2008;22(6):803–8.

    Google Scholar 

  45. Gheuens E, Daelemans R, Mesens S. Dialysability of gadoteric acid in patients with end-stage renal disease undergoing hemodialysis. Investig Radiol. 2014;49(8):505–8.

    CAS  Google Scholar 

  46. Pieringer H, Schmekal B, Janko O, Biesenbach G. Treatment with corticosteroids does not seem to benefit nephrogenic systemic fibrosis. Nephrol Dial Transplant. 2007;22(10):3094.

    PubMed  Google Scholar 

  47. Kadiyala D, Roer DA, Perazella MA. Nephrogenic systemic fibrosis associated with gadoversetamide exposure: treatment with sodium thiosulfate. Am J Kidney Dis. 2009;53(1):133–7.

    PubMed  Google Scholar 

  48. Kay J, High WA. Imatinib mesylate treatment of nephrogenic systemic fibrosis. Arthritis Rheum. 2008;58(8):2543–8.

    CAS  PubMed  Google Scholar 

  49. Richmond H, Zwerner J, Kim Y, Fiorentino D. Nephrogenic systemic fibrosis: relationship to gadolinium and response to photopheresis. Arch Dermatol. 2007;143(8):1025–30.

    PubMed  Google Scholar 

  50. Schmook T, Budde K, Ulrich C, Neumayer H-H, Fritsche L, Stockfleth E. Successful treatment of nephrogenic fibrosing dermopathy in a kidney transplant recipient with photodynamic therapy. Nephrol Dial Transplant. 2005;20(1):220–2.

    PubMed  Google Scholar 

  51. Ting WW, Stone MS, Madison KC, Kurtz K. Nephrogenic fibrosing dermopathy with systemic involvement. Arch Dermatol. 2003;139(7):903–6.

    PubMed  Google Scholar 

  52. Hubbard V, Davenport A, Jarmulowicz M, Rustin M. Scleromyxoedema-like changes in four renal dialysis patients. Br J Dermatol. 2003;148(3):563–8.

    CAS  PubMed  Google Scholar 

  53. Kelly B, Petitt M, Sanchez R. Nephrogenic systemic fibrosis is associated with transforming growth factor beta and Smad without evidence of renin-angiotensin system involvement. J Am Acad Dermatol. 2008;58(6):1025–30.

    PubMed  Google Scholar 

  54. Schieren G, Gambichler T, Skrygan M, Burkert B, Altmeyer P, Rump LC, et al. Balance of profibrotic and antifibrotic [corrected] signaling in nephrogenic systemic fibrosis skin lesions. Am J Kidney Dis. 2010;55(6):1040–9.

    CAS  PubMed  Google Scholar 

  55. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600–6.

    CAS  PubMed  Google Scholar 

  56. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370(6488):341–7.

    CAS  PubMed  Google Scholar 

  57. Moustakas A, Heldin C-H. The regulation of TGFbeta signal transduction. Development. 2009;136(22):3699–714.

    CAS  PubMed  Google Scholar 

  58. Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner I, et al. The type II transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem. 1997;272(23):14850–9.

    CAS  PubMed  Google Scholar 

  59. Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci. 2004;35(2):83–92.

    CAS  PubMed  Google Scholar 

  60. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, et al. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 1997;16(17):5353–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol. 2002;118(2):211–5.

    CAS  PubMed  Google Scholar 

  62. Bhagavathula N, Dame MK, DaSilva M, Jenkins W, Aslam MN, Perone P, et al. Fibroblast response to gadolinium: role for platelet-derived growth factor receptor. Investig Radiol. 2010;45(12):769–77.

    CAS  Google Scholar 

  63. Marais R, Wynne J, Treisman R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell. 1993;73(2):381–93.

    CAS  PubMed  Google Scholar 

  64. Chen RH, Abate C, Blenis J. Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc Natl Acad Sci U S A. 1993;90(23):10952–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Morton S, Davis RJ, McLaren A, Cohen P. A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO J. 2003;22(15):3876–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Courcelles M, Frémin C, Voisin L, Lemieux S, Meloche S, Thibault P. Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions. Mol Syst Biol. 2013;9:669.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, et al. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 2008;10(10):1199–207.

    CAS  PubMed  Google Scholar 

  68. Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 1999;13(10):1297–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yin Q, Lin S-C, Lamothe B, Lu M, Lo Y-C, Hura G, et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol. 2009;16(6):658–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fan Y, Yu Y, Shi Y, Sun W, Xie M, Ge N, et al. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation. J Biol Chem. 2010;285(8):5347–60.

    CAS  PubMed  Google Scholar 

  71. Frey RS, Mulder KM. Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase/Jun N-terminal kinase activation by transforming growth factor beta in the negative growth control of breast cancer cells. Cancer Res. 1997;57(4):628–33.

    CAS  PubMed  Google Scholar 

  72. Hocevar BA, Brown TL, Howe PH. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 1999;18(5):1345–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu L, Hébert MC, Zhang YE. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 2002;21(14):3749–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem. 1999;274(38):27161–7.

    CAS  PubMed  Google Scholar 

  75. Frigo DE, Tang Y, Beckman BS, Scandurro AB, Alam J, Burow ME, et al. Mechanism of AP-1-mediated gene expression by select organochlorines through the p38 MAPK pathway. Carcinogenesis. 2004;25(2):249–61.

    CAS  PubMed  Google Scholar 

  76. Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK signaling pathway in renal fibrosis. Front Physiol. 2017;8:829.

    PubMed  PubMed Central  Google Scholar 

  77. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem. 1995;270(28):16483–6.

    CAS  PubMed  Google Scholar 

  78. Parapuram SK, Shi-wen X, Elliott C, Welch ID, Jones H, Baron M, et al. Loss of PTEN expression by dermal fibroblasts causes skin fibrosis. J Invest Dermatol. 2011;131(10):1996–2003.

    CAS  PubMed  Google Scholar 

  79. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000;275(47):36803–10.

    CAS  PubMed  Google Scholar 

  80. Chiang GG, Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem. 2005;280(27):25485–90.

    CAS  PubMed  Google Scholar 

  81. Zhang YE. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017 ;9(2).

    Google Scholar 

  82. Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol. 2007;178(3):437–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Liang M, Lv J, Chu H, Wang J, Chen X, Zhu X, et al. Vertical inhibition of PI3K/Akt/mTOR signaling demonstrates in vitro and in vivo anti-fibrotic activity. J Dermatol Sci. 2014;76(2):104–11.

    CAS  PubMed  Google Scholar 

  84. Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell. 1986;46(2):155–69.

    CAS  PubMed  Google Scholar 

  85. Betsholtz C. Biology of platelet-derived growth factors in development. Birth Defects Res Part C Embryo Today Rev. 2003;69(4):272–85.

    CAS  Google Scholar 

  86. Johnsson A, Heldin CH, Westermark B, Wasteson A. Platelet-derived growth factor: identification of constituent polypeptide chains. Biochem Biophys Res Commun. 1982;104(1):66–74.

    CAS  PubMed  Google Scholar 

  87. Heldin C-H, Eriksson U, Ostman A. New members of the platelet-derived growth factor family of mitogens. Arch Biochem Biophys. 2002;398(2):284–90.

    CAS  PubMed  Google Scholar 

  88. Gay S, Jones RE, Huang GQ, Gay RE. Immunohistologic demonstration of platelet-derived growth factor (PDGF) and sis-oncogene expression in scleroderma. J Invest Dermatol. 1989;92(2):301–3.

    CAS  PubMed  Google Scholar 

  89. Klareskog L, Gustafsson R, Scheynius A, Hällgren R. Increased expression of platelet-derived growth factor type B receptors in the skin of patients with systemic sclerosis. Arthritis Rheum. 1990;33(10):1534–41.

    CAS  PubMed  Google Scholar 

  90. Pandolfi A, Florita M, Altomare G, Pigatto P, Donati MB, Poggi A. Increased plasma levels of platelet-derived growth factor activity in patients with progressive systemic sclerosis. Proc Soc Exp Biol Med. 1989;191(1):1–4.

    CAS  PubMed  Google Scholar 

  91. Yamakage A, Kikuchi K, Smith EA, LeRoy EC, Trojanowska M. Selective upregulation of platelet-derived growth factor alpha receptors by transforming growth factor beta in scleroderma fibroblasts. J Exp Med. 1992;175(5):1227–34.

    CAS  PubMed  Google Scholar 

  92. Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest. 2007;117(3):730–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hu Q, Klippel A, Muslin AJ, Fantl WJ, Williams LT. Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science. 1995;268(5207):100–2.

    CAS  PubMed  Google Scholar 

  94. Bera A, Das F, Ghosh-Choudhury N, Li X, Pal S, Gorin Y, et al. A positive feedback loop involving Erk5 and Akt turns on mesangial cell proliferation in response to PDGF. Am J Phys Cell Phys. 2014;306(11):C1089–100.

    CAS  Google Scholar 

  95. Ying H-Z, Chen Q, Zhang W-Y, Zhang H-H, Ma Y, Zhang S-Z, et al. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol Med Rep. 2017;16(6):7879–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344–62.

    CAS  PubMed  Google Scholar 

  97. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.

    CAS  PubMed  Google Scholar 

  98. Sun S-C. Non-canonical NF-κB signaling pathway. Cell Res. 2011;21(1):71–85.

    CAS  PubMed  Google Scholar 

  99. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18(18):2195–224.

    CAS  PubMed  Google Scholar 

  100. Rothwarf DM, Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE. 1999;1999(5):RE1.

    CAS  PubMed  Google Scholar 

  101. Alkalay I, Yaron A, Hatzubai A, Orian A, Ciechanover A, Ben-Neriah Y. Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1995;92(23):10599–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science. 2001 Aug 24;293(5534):1495–9.

    CAS  PubMed  Google Scholar 

  103. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell. 2001;7(2):401–9.

    CAS  PubMed  Google Scholar 

  104. Coope HJ, Atkinson PGP, Huhse B, Belich M, Janzen J, Holman MJ, et al. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J. 2002;21(20):5375–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Derudder E, Dejardin E, Pritchard LL, Green DR, Korner M, Baud V. RelB/p50 dimers are differentially regulated by tumor necrosis factor-alpha and lymphotoxin-beta receptor activation: critical roles for p100. J Biol Chem. 2003;278(26):23278–84.

    CAS  PubMed  Google Scholar 

  106. Fullard N, Moles A, O’Reilly S, van Laar JM, Faini D, Diboll J, et al. The c-Rel subunit of NF-κB regulates epidermal homeostasis and promotes skin fibrosis in mice. Am J Pathol. 2013;182(6):2109–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Piera-Velazquez S, Louneva N, Fertala J, Wermuth PJ, Del Galdo F, Jimenez SA. Persistent activation of dermal fibroblasts from patients with gadolinium-associated nephrogenic systemic fibrosis. Ann Rheum Dis. 2010;69(11):2017–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Fujimoto M, et al. Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol. 1996;106(4):729–33.

    CAS  PubMed  Google Scholar 

  109. Shi-wen X, Pennington D, Holmes A, Leask A, Bradham D, Beauchamp JR, et al. Autocrine overexpression of CTGF maintains fibrosis: RDA analysis of fibrosis genes in systemic sclerosis. Exp Cell Res. 2000;259(1):213–24.

    CAS  PubMed  Google Scholar 

  110. Liu S, Shi-wen X, Abraham DJ, Leask A. CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum. 2011;63(1):239–46.

    CAS  PubMed  Google Scholar 

  111. Stratton R, Rajkumar V, Ponticos M, Nichols B, Shiwen X, Black CM, et al. Prostacyclin derivatives prevent the fibrotic response to TGF-beta by inhibiting the Ras/MEK/ERK pathway. FASEB J. 2002;16(14):1949–51.

    CAS  PubMed  Google Scholar 

  112. Holmes A, Abraham DJ, Sa S, Shiwen X, Black CM, Leask A. CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem. 2001;276(14):10594–601.

    CAS  PubMed  Google Scholar 

  113. Wahab NA, Weston BS, Mason RM. Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol. 2005;16(2):340–51.

    CAS  PubMed  Google Scholar 

  114. Chen Y, Abraham DJ, Shi-Wen X, Pearson JD, Black CM, Lyons KM, et al. CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol Biol Cell. 2004;15(12):5635–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Nishida T, Kubota S, Fukunaga T, Kondo S, Yosimichi G, Nakanishi T, et al. CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J Cell Physiol. 2003;196(2):265–75.

    CAS  PubMed  Google Scholar 

  116. Gao R, Brigstock DR. Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem. 2004;279(10):8848–55.

    CAS  PubMed  Google Scholar 

  117. Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol. 2002;4(8):599–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chevalier G, Yeger H, Martinerie C, Laurent M, Alami J, Schofield PN, et al. novH: differential expression in developing kidney and Wilm’s tumors. Am J Pathol. 1998;152(6):1563–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. McCallum L, Price S, Planque N, Perbal B, Pierce A, Whetton AD, et al. A novel mechanism for BCR-ABL action: stimulated secretion of CCN3 is involved in growth and differentiation regulation. Blood. 2006;108(5):1716–23.

    CAS  PubMed  Google Scholar 

  120. Ren Z, Hou Y, Ma S, Tao Y, Li J, Cao H, et al. Effects of CCN3 on fibroblast proliferation, apoptosis and extracellular matrix production. Int J Mol Med. 2014;33(6):1607–12.

    CAS  PubMed  Google Scholar 

  121. Riser BL, Najmabadi F, Garchow K, Barnes JL, Peterson DR, Sukowski EJ. Treatment with the matricellular protein CCN3 blocks and/or reverses fibrosis development in obesity with diabetic nephropathy. Am J Pathol. 2014;184(11):2908–21.

    CAS  PubMed  Google Scholar 

  122. Riser BL, Najmabadi F, Perbal B, Peterson DR, Rambow JA, Riser ML, et al. CCN3 (NOV) is a negative regulator of CCN2 (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease. Am J Pathol. 2009;174(5):1725–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Riser BL, Bhagavathula N, Perone P, Garchow K, Xu Y, Fisher GJ, et al. Gadolinium-induced fibrosis is counter-regulated by CCN3 in human dermal fibroblasts: a model for potential treatment of nephrogenic systemic fibrosis. J Cell Commun Signal. 2012;6(2):97–105.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Sayed.

Ethics declarations

Conflict of Interest

Dr. Sayed reports roles as a speaker, advisory board member, and co-investigator for Abbvie; speaker and co-investigator for Novartis; investigator with fees to institution for InflaRx; and investigator with fees to institution for UCB.

Dr. Ravi declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Dermatology and Wound Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, S., Sayed, C.J. Fibrotic Signaling Pathways of Skin Fibroblasts in Nephrogenic Systemic Fibrosis. Curr Geri Rep 8, 338–345 (2019). https://doi.org/10.1007/s13670-019-00306-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13670-019-00306-5

Keywords

Navigation