Skip to main content

Advertisement

Log in

Exercise in Type 2 Diabetic Peripheral Neuropathy

  • Physical Therapy and Rehabilitation (O Addison, Section Editor)
  • Published:
Current Geriatrics Reports Aims and scope Submit manuscript

Abstract

Approximately half of all patients with type 2 diabetes develop peripheral neuropathy, which contributes to functional decline and significantly reduces quality of life. Type 2 diabetes and consequent diabetic peripheral neuropathy share several pathogenic mechanisms and are both positively influenced by increased physical activity and exercise even prior to disease diagnosis. Successful exercise interventions in individuals with diabetic peripheral neuropathy have employed continuous endurance, resistance, balance and agility, and high-intensity interval training protocols and have been associated with improvement in stability, gait, sensory function, nerve regeneration rates, pain, mood, and quality of life. Recent evidence has shown no increased prevalence of foot trauma in those with diabetic peripheral neuropathy suggesting that weight-bearing exercise is safe in the absence of active ulceration. While exercise is often associated with improved glycemic control, several studies suggest improvement in neuropathy is independent of improved glycemic control or weight reduction, suggesting other metabolic effects, or exercise-related physiologic changes are important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Corriveau H et al. Evaluation of postural stability in elderly with diabetic neuropathy. Diabetes Care. 2000;23(8):1187–91.

    Article  CAS  PubMed  Google Scholar 

  2. Gordois A et al. The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care. 2003;26(6):1790–5.

    Article  PubMed  Google Scholar 

  3. Mueller MJ et al. Insensitivity, limited joint mobility, and plantar ulcers in patients with diabetes mellitus. Phys Ther. 1989;69(6):453–9. discussion 459–62.

    CAS  PubMed  Google Scholar 

  4. Singleton JR et al. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients. Ann Neurol. 2015;77(1):146–53. Exercise induced changes in metabolic syndrome features affect changes in cutaneous regenerative capacity.

    Article  PubMed  Google Scholar 

  5. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32 Suppl 2:S157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dubois SG et al. Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity (Silver Spring). 2006;14(9):1543–52.

    Article  CAS  Google Scholar 

  7. Pasarica M et al. Differential effect of weight loss on adipocyte size subfractions in patients with type 2 diabetes. Obesity (Silver Spring). 2009;17(10):1976–8.

    Article  CAS  Google Scholar 

  8. Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond). 2009;33(1):54–66.

    Article  CAS  Google Scholar 

  9. Zhou QG et al. Advanced oxidation protein products induce inflammatory response and insulin resistance in cultured adipocytes via induction of endoplasmic reticulum stress. Cell Physiol Biochem. 2010;26(4–5):775–86.

    Article  CAS  PubMed  Google Scholar 

  10. Mootha VK et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  11. Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest. 2005;115(7):1699–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307(5708):384–7.

    Article  CAS  PubMed  Google Scholar 

  13. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992;15(3):318–68.

    Article  CAS  PubMed  Google Scholar 

  14. Gulli G et al. The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. Diabetes. 1992;41(12):1575–86.

    Article  CAS  PubMed  Google Scholar 

  15. Vaag A, Henriksen JE, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese Caucasian first-degree relatives of patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1992;89(3):782–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weyer C et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104(6):787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim B et al. Hyperglycemia-induced tau cleavage in vitro and in vivo: a possible link between diabetes and Alzheimer’s disease. J Alzheimers Dis. 2013;34(3):727–39.

    CAS  PubMed  Google Scholar 

  18. Grote CW et al. Peripheral nervous system insulin resistance in ob/ob mice. Acta Neuropathol Commun. 2013;1:15.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feldman EL. Oxidative stress and diabetic neuropathy: a new understanding of an old problem. J Clin Invest. 2003;111(4):431–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vincent AM et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol. 2010;120(4):477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim B et al. Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons. Endocrinology. 2011;152(10):3638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bays HE. Adiposopathy is “sick fat” a cardiovascular disease? J Am Coll Cardiol. 2011;57(25):2461–73.

    Article  CAS  PubMed  Google Scholar 

  23. Wong KL et al. Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacol Rep. 2014;66(6):1106–13.

    Article  CAS  PubMed  Google Scholar 

  24. Pratipanawatr W et al. Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes. 2001;50(11):2572–8.

    Article  CAS  PubMed  Google Scholar 

  25. Petersen KF, Dufour S, Shulman GI. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med. 2005;2(9):e233.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kashyap SR et al. Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes. Am J Physiol Endocrinol Metab. 2004;287(3):E537–46.

    Article  CAS  PubMed  Google Scholar 

  27. Goodpaster BH, Thaete FL, Kelley DE. Composition of skeletal muscle evaluated with computed tomography. Ann N Y Acad Sci. 2000;904:18–24.

    Article  CAS  PubMed  Google Scholar 

  28. Bittel AJ et al. Explanators of sarcopenia in individuals with diabesity: a cross-sectional analysis. J Geriatr Phys Ther. 2015 [Epub ahead of print].

  29. Hilton TN et al. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys Ther. 2008;88(11):1336–44.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tuttle LJ, Hastings MK, Mueller MJ. A moderate-intensity weight-bearing exercise program for a person with type 2 diabetes and peripheral neuropathy. Phys Ther. 2012;92(1):133–41.

    Article  PubMed  Google Scholar 

  31. Tuttle LJ et al. Lower physical activity is associated with higher intermuscular adipose tissue in people with type 2 diabetes and peripheral neuropathy. Phys Ther. 2011;91(6):923–30.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sugimoto K, Yasujima M, Yagihashi S. Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des. 2008;14(10):953–61.

    Article  CAS  PubMed  Google Scholar 

  33. Juranek JK et al. Increased expression of the receptor for advanced glycation end-products in human peripheral neuropathies. Brain Behav. 2013;3(6):701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dobson JL, McMillan J, Li L. Benefits of exercise intervention in reducing neuropathic pain. Front Cell Neurosci. 2014;8:102.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Singleton JR et al. Exercise increases cutaneous nerve density in diabetic patients without neuropathy. Ann Clin Transl Neurol. 2014;1(10):844–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yoo M et al. Pilot study of exercise therapy on painful diabetic peripheral neuropathy. Pain Med. 2015;16(8):1482–9.

    Article  PubMed  Google Scholar 

  37. Smith AG, Singleton JR. Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications. 2013;27(5):436–42.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Callaghan BC et al. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11(6):521–34.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ziegler D et al. Near-normoglycaemia and development of neuropathy: a 24-year prospective study from diagnosis of type 1 diabetes. BMJ Open. 2015;5(6):e006559.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kennedy JM, Zochodne DW. Impaired peripheral nerve regeneration in diabetes mellitus. J Peripher Nerv Syst. 2005;10(2):144–57.

    Article  CAS  PubMed  Google Scholar 

  41. Griffin JW, Thompson WJ. Biology and pathology of nonmyelinating Schwann cells. Glia. 2008;56(14):1518–31.

    Article  PubMed  Google Scholar 

  42. Tesfaye S et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(10):2285–93.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaprio J et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia. 1992;35(11):1060–7.

    Article  CAS  PubMed  Google Scholar 

  44. Groop L et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes. 1996;45(11):1585–93.

    Article  CAS  PubMed  Google Scholar 

  45. Langenberg C et al. Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study. PLoS Med. 2014;11(5):e1001647.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Siegel LC et al. Physical activity, body mass index, and diabetes risk in men: a prospective study. Am J Med. 2009;122(12):1115–21.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Weinstein AR et al. Relationship of physical activity vs body mass index with type 2 diabetes in women. JAMA. 2004;292(10):1188–94.

    Article  CAS  PubMed  Google Scholar 

  48. Han L et al. Peripheral neuropathy is associated with insulin resistance independent of metabolic syndrome. Diabetol Metab Syndr. 2015;7:14.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Al-Kaabi, J, Maskari, FA, Zoubeidi, T, Abdulle, A, Shah, SM. Prevalence and determinants of peripheral neuropathy in patients with type 2 diabetes attending a tertiary care center in the United Arab Emirates. J Diabetes Metab, 2014;5(346). doi:10.4172/2155-6156.1000346.

  50. Diabetes Prevention Program Research, G et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374(9702):1677–86.

    Article  Google Scholar 

  51. Tuomilehto J et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.

    Article  CAS  PubMed  Google Scholar 

  52. Pan XR et al. Prevalence of diabetes and its risk factors in China, 1994. National Diabetes Prevention and Control Cooperative Group. Diabetes Care. 1997;20(11):1664–9.

    Article  CAS  PubMed  Google Scholar 

  53. Balducci S et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Complications. 2006;20(4):216–23.

    Article  PubMed  Google Scholar 

  54. Smith AG et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29(6):1294–9.

    Article  PubMed  Google Scholar 

  55. Kluding PM et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complications. 2012;26(5):424–9. Describes changes in neuropathic and cutaneous nerve fiber branching following exercise in persons with diabetic peripheral neuropathy.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Morrison S et al. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy. J Diabetes Complications. 2014;28(5):715–22.

    Article  PubMed  Google Scholar 

  57. Dixit S, Maiya AG, Shastry BA. Effect of aerobic exercise on peripheral nerve functions of population with diabetic peripheral neuropathy in type 2 diabetes: a single blind, parallel group randomized controlled trial. J Diabetes Complications. 2014;28(3):332–9. Compares moderate intensity aerobic exercise and standard care on nerve conduction velocity and Michigan Diabetic Neuropathy Score.

    Article  PubMed  Google Scholar 

  58. Ahn S, Song R. Effects of Tai Chi exercise on glucose control, neuropathy scores, balance, and quality of life in patients with type 2 diabetes and neuropathy. J Altern Complement Med. 2012;18(12):1172–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Healy GN et al. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care. 2008;31(2):369–71.

    Article  PubMed  Google Scholar 

  60. Mueller MJ et al. Weight-bearing versus nonweight-bearing exercise for persons with diabetes and peripheral neuropathy: a randomized controlled trial. Arch Phys Med Rehabil. 2013;94(5):829–38.

    Article  PubMed  Google Scholar 

  61. Lemaster JW et al. Daily weight-bearing activity does not increase the risk of diabetic foot ulcers. Med Sci Sports Exerc. 2003;35(7):1093–9.

    Article  PubMed  Google Scholar 

  62. Lemaster JW et al. Effect of weight-bearing activity on foot ulcer incidence in people with diabetic peripheral neuropathy: feet first randomized controlled trial. Phys Ther. 2008;88(11):1385–98.

    Article  PubMed  Google Scholar 

  63. Mueller MJ, Maluf KS. Tissue adaptation to physical stress: a proposed “physical stress theory” to guide physical therapist practice, education, and research. Phys Ther. 2002;82(4):383–403.

    PubMed  Google Scholar 

  64. Maluf KS, Mueller MJ. Novel Award 2002. Comparison of physical activity and cumulative plantar tissue stress among subjects with and without diabetes mellitus and a history of recurrent plantar ulcers. Clin Biomech (Bristol, Avon). 2003;18(7):567–75.

    Article  CAS  Google Scholar 

  65. Armstrong DG et al. Variability in activity may precede diabetic foot ulceration. Diabetes Care. 2004;27(8):1980–4.

    Article  PubMed  Google Scholar 

  66. Hu FB et al. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289(14):1785–91.

    Article  PubMed  Google Scholar 

  67. Barone Gibbs B et al. Reducing sedentary behavior versus increasing moderate-to-vigorous intensity physical activity in older adults: a 12-week randomized, clinical trial. J Aging Health. 2016 [Epub ahead of print].

  68. Boucher P et al. Postural stability in diabetic polyneuropathy. Diabetes Care. 1995;18(5):638–45.

    Article  CAS  PubMed  Google Scholar 

  69. Menz HB et al. Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy. Arch Phys Med Rehabil. 2004;85(2):245–52.

    Article  PubMed  Google Scholar 

  70. Pan X, Bai J. Balance training in the intervention of fall risk in elderly with diabetic peripheral neuropathy: a review. Int J Nurs Sci. 2014;1(4):441–5.

    Google Scholar 

  71. Gregg EW et al. Diabetes and physical disability among older U.S. adults. Diabetes Care. 2000;23(9):1272–7.

    Article  CAS  PubMed  Google Scholar 

  72. Miller DK et al. Reported and measured physical functioning in older inner-city diabetic African Americans. J Gerontol A Biol Sci Med Sci. 1999;54(5):M230–6.

    Article  CAS  PubMed  Google Scholar 

  73. DeMott TK et al. Falls and gait characteristics among older persons with peripheral neuropathy. Am J Phys Med Rehabil. 2007;86(2):125–32.

    Article  PubMed  Google Scholar 

  74. Cavanagh PR et al. Problems with gait and posture in neuropathic patients with insulin-dependent diabetes mellitus. Diabet Med. 1992;9(5):469–74.

    Article  CAS  PubMed  Google Scholar 

  75. Lee K, Lee S, Song C. Whole-body vibration training improves balance, muscle strength and glycosylated hemoglobin in elderly patients with diabetic neuropathy. Tohoku J Exp Med. 2013;231(4):305–14.

    Article  PubMed  Google Scholar 

  76. Akbari M et al. Do diabetic neuropathy patients benefit from balance training? J Rehabil Res Dev. 2012;49(2):333–8.

    Article  PubMed  Google Scholar 

  77. Song CH et al. Effects of an exercise program on balance and trunk proprioception in older adults with diabetic neuropathies. Diabetes Technol Ther. 2011;13(8):803–11.

    Article  PubMed  Google Scholar 

  78. Allet L et al. The gait and balance of patients with diabetes can be improved: a randomised controlled trial. Diabetologia. 2010;53(3):458–66.

    Article  CAS  PubMed  Google Scholar 

  79. Richardson JK, Sandman D, Vela S. A focused exercise regimen improves clinical measures of balance in patients with peripheral neuropathy. Arch Phys Med Rehabil. 2001;82(2):205–9.

    Article  CAS  PubMed  Google Scholar 

  80. Kelley DE, Goodpaster BH. Effects of physical activity on insulin action and glucose tolerance in obesity. Med Sci Sports Exerc. 1999;31(11 Suppl):S619–23.

    Article  CAS  PubMed  Google Scholar 

  81. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mandroukas K et al. Physical training in obese women. Effects of muscle morphology, biochemistry and function. Eur J Appl Physiol Occup Physiol. 1984;52(4):355–61.

    Article  CAS  PubMed  Google Scholar 

  83. Adamopoulos S et al. Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J. 2001;22(9):791–7.

    Article  CAS  PubMed  Google Scholar 

  84. Menshikova EV et al. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci. 2006;61(6):534–40.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Talanian JL et al. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol (1985). 2007;102(4):1439–47.

    Article  CAS  Google Scholar 

  86. Dunn AL, Trivedi MH, O’Neal HA. Physical activity dose–response effects on outcomes of depression and anxiety. Med Sci Sports Exerc. 2001;33(6 Suppl):S587–97. discussion 609–10.

    Article  CAS  PubMed  Google Scholar 

  87. Salmon P. Effects of physical exercise on anxiety, depression, and sensitivity to stress: a unifying theory. Clin Psychol Rev. 2001;21(1):33–61.

    Article  CAS  PubMed  Google Scholar 

  88. Praet SF, van Loon LJ. Exercise: the brittle cornerstone of type 2 diabetes treatment. Diabetologia. 2008;51(3):398–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dunstan DW et al. Too much sitting—a health hazard. Diabetes Res Clin Pract. 2012;97(3):368–76.

    Article  PubMed  Google Scholar 

  90. Beddhu S et al. Light-intensity physical activities and mortality in the United States general population and CKD subpopulation. Clin J Am Soc Nephrol. 2015;10(7):1145–53.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jelleyman C et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942–61.

    Article  CAS  PubMed  Google Scholar 

  92. Hamed N, Raoof N. Effect of high intensity interval training on diabetic obese women with polyneuropathy: a randomized controlled clinical trial. Phys Ther Rehabil. 2014;1(4):1. Compares high intensity interval training and moderate intensity aerobic exercise on pain and glucose tolerance in patients with polyneuropathy.

    Google Scholar 

  93. Little JP et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol (1985). 2011;111(6):1554–60.

    Article  CAS  Google Scholar 

  94. Iellamo F et al. Matched dose interval and continuous exercise training induce similar cardiorespiratory and metabolic adaptations in patients with heart failure. Int J Cardiol. 2013;167(6):2561–5.

    Article  PubMed  Google Scholar 

  95. Fu TC et al. Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol. 2013;167(1):41–50.

    Article  PubMed  Google Scholar 

  96. Conraads VM et al. Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX-CAD study. Int J Cardiol. 2015;179:203–10.

    Article  PubMed  Google Scholar 

  97. Sigal RJ et al. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(6):1433–8.

    Article  PubMed  Google Scholar 

  98. Kluding PM et al. Safety of aerobic exercise in people with diabetic peripheral neuropathy: single-group clinical trial. Phys Ther. 2015;95(2):223–34. Examines adverse events during moderate-intensity, supervised aerobic exercise in people with diabetic peripheral neuropathy.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin L. Marcus.

Ethics declarations

Conflict of Interest

Arwen Fuller and Robin Marcus declare no conflict of interest. Gordon Smith reports grants from NIH (R01DK064814) during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Physical Therapy and Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuller, A.A., Singleton, J.R., Smith, A.G. et al. Exercise in Type 2 Diabetic Peripheral Neuropathy. Curr Geri Rep 5, 150–159 (2016). https://doi.org/10.1007/s13670-016-0177-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13670-016-0177-6

Keywords

Navigation