Skip to main content
Log in

The Implications and Assessment of Myocardial Fibrosis in Older Cardiovascular Patients

  • Cardiovascular Disease in the Elderly (DE Forman, Section Editor)
  • Published:
Current Geriatrics Reports Aims and scope Submit manuscript

Abstract

Myocardial fibrosis (MF) may play a role in homeostenosis—the decreasing ability of the aging heart to tolerate stressors and cardiac insults—since MF distorts myocardial architecture, impairs mechanical, electrical, and vasomotor function, and culminates in vulnerability to adverse outcomes. While MF is prevalent in many cardiac disorders found in older people, most MF is not attributable to age. MF is a dynamic process whereby synthesis predominates over degradation. Importantly, MF is reversible which likely leads to regression of mechanical and vasomotor abnormalities and survival benefit. MF may be a therapeutic target. Cardiac magnetic resonance using T1 mapping and extracellular volume measures offers a novel and non-invasive capability to quantify the entire spectrum MF and also detect cardiac amyloidosis. MF may represent an important phenotype to identify for diagnostic and prognostic decision making or even therapeutic decision-making even though its causes and optimal treatment are not fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83(6):1849–65.

    Article  CAS  PubMed  Google Scholar 

  2. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79(1):215–62.

    CAS  PubMed  Google Scholar 

  3. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences: CMLS. 2013;71(4):549–74. This article summarizes many key features of myocardial fibrosis pathogenesis.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105(21):2512–7.

    Article  CAS  PubMed  Google Scholar 

  5. Izawa H, Murohara T, Nagata K, et al. Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation. 2005;112(19):2940–5.

    CAS  PubMed  Google Scholar 

  6. Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102(12):1388–93.

    Article  CAS  PubMed  Google Scholar 

  7. Tamarappoo BK, John BT, Reinier K, et al. Vulnerable myocardial interstitium in patients with isolated left ventricular hypertrophy and sudden cardiac death: a postmortem histological evaluation. J Am Heart Assoc. 2012;1(3), e001511.

    Article  PubMed Central  PubMed  Google Scholar 

  8. McLenachan JM, Dargie HJ. Ventricular arrhythmias in hypertensive left ventricular hypertrophy. Relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. American Journal of Hypertension. 1990;3(10):735–40.

    CAS  PubMed  Google Scholar 

  9. Schwartzkopff B, Brehm M, Mundhenke M, Strauer BE. Repair of coronary arterioles after treatment with perindopril in hypertensive heart disease. Hypertension. 2000;36(2):220–5.

    Article  CAS  PubMed  Google Scholar 

  10. Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126(10):1206–16. This article demonstrates strong associations between mortality and cardiovascular magnetic resonance measures of the extracellular volume fraction.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wong TC, Piehler KM, Kang IA, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2014;35(10):657–64. This article demonstrates strong associations between hospitalization for heart failure (and/or mortality) and cardiovascular magnetic resonance measures of the extracellular volume fraction.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol. 1989;13(7):1637–52.

    Article  CAS  PubMed  Google Scholar 

  13. Heymans S, Gonzalez A, Pizard A, et al. Searching for new mechanisms of myocardial fibrosis with diagnostic and/or therapeutic potential. European Journal of Heart Failure. 2015;17(8):764–71. This article summarizes key features of myocardial fibrosis and its suitability as a therapeutic target.

    Article  PubMed  Google Scholar 

  14. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation. 2000;102(22):2700–6.

    Article  CAS  PubMed  Google Scholar 

  15. Schelbert EB, Fonarow GC, Bonow RO, Butler J, Gheorghiade M. Therapeutic targets in heart failure: refocusing on the myocardial interstitium. J Am Coll Cardiol. 2014;63(21):2188–98. This article summarizes key features of myocardial fibrosis and its suitability as a therapeutic target.

    Article  PubMed  Google Scholar 

  16. Schelbert EB, Messroghli DR. Clinical applications of cardiac T1 mapping. Radiology. 2015;in press.

  17. Van de Veire NR, De Backer J, Ascoop AK, Middernacht B, Velghe A, Sutter JD. Echocardiographically estimated left ventricular end-diastolic and right ventricular systolic pressure in normotensive healthy individuals. Int J Cardiovasc Imaging. 2006;22(5):633–41.

    Article  PubMed  Google Scholar 

  18. Aurigemma GP, Gottdiener JS, Arnold AM, Chinali M, Hill JC, Kitzman D. Left atrial volume and geometry in healthy aging: the Cardiovascular Health Study. Circ Cardiovasc Imaging. 2009;2(4):282–9.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Gerstenblith G, Frederiksen J, Yin FC, Fortuin NJ, Lakatta EG, Weisfeldt ML. Echocardiographic assessment of a normal adult aging population. Circulation. 1977;56(2):273–8.

    Article  CAS  PubMed  Google Scholar 

  20. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res. 1991;68(6):1560–8.

    Article  CAS  PubMed  Google Scholar 

  21. Olivetti G, Giordano G, Corradi D, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26(4):1068–79.

    Article  CAS  PubMed  Google Scholar 

  22. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102(4):470–9.

    Article  CAS  PubMed  Google Scholar 

  24. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39. e14.

    Article  PubMed  Google Scholar 

  25. Liu CY, Liu YC, Wu C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2013;62(14):1280–7. This article demonstrates the almost negligible relationship between age and myocardial fibrosis.

    Article  PubMed  Google Scholar 

  26. Moon JC, Treibel TA, Schelbert EB. T1 mapping for diffuse myocardial fibrosis: a key biomarker in cardiac disease? J Am Coll Cardiol. 2013;62(14):1288–9.

    Article  PubMed  Google Scholar 

  27. Maggioni AP, Maseri A, Fresco C, et al. Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The Investigators of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI-2). N Engl J Med. 1993;329(20):1442–8.

    Article  CAS  PubMed  Google Scholar 

  28. Mehta RH, Rathore SS, Radford MJ, Wang Y, Wang Y, Krumholz HM. Acute myocardial infarction in the elderly: differences by age. J Am Coll Cardiol. 2001;38(3):736–41.

    Article  CAS  PubMed  Google Scholar 

  29. Khavandi K, Khavandi A, Asghar O, et al. Diabetic cardiomyopathy—a distinct disease? Best Pract Res Clin Endocrinol Metab. 2009;23(3):347–60.

    Article  PubMed  Google Scholar 

  30. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57(8):891–903.

    Article  PubMed  Google Scholar 

  31. van Heerebeek L, Borbely A, Niessen HW, et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006;113(16):1966–73.

    Article  PubMed  Google Scholar 

  32. van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation. 1990;82(3):848–55.

    Article  PubMed  Google Scholar 

  33. Raman SV. The hypertensive heart. An integrated understanding informed by imaging. J Am Coll Cardiol. 2010;55(2):91–6.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Querejeta R, Lopez B, Gonzalez A, et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation. 2004;110(10):1263–8.

    Article  CAS  PubMed  Google Scholar 

  35. Querejeta R, Varo N, Lopez B, et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000;101(14):1729–35.

    Article  CAS  PubMed  Google Scholar 

  36. Beltrami CA, Finato N, Rocco M, et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation. 1994;89(1):151–63.

    Article  CAS  PubMed  Google Scholar 

  37. Beltrami CA, Finato N, Rocco M, et al. The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol. 1995;27(1):291–305.

    Article  CAS  PubMed  Google Scholar 

  38. Flett AS, Sado DM, Quarta G, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. European Heart Journal Cardiovascular Imaging. 2012;13(10):819–26.

    Article  PubMed  Google Scholar 

  39. Wong TC. Cardiovascular magnetic resonance imaging of myocardial interstitial expansion in hypertrophic cardiomyopathy. Curr Cardiovasc Imaging Rep. 2014;7:9267.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Schelbert EB, Cao JJ, Sigurdsson S, et al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA : the journal of the American Medical Association. 2012;308(9):890–6.

    Article  CAS  PubMed  Google Scholar 

  41. Schelbert EB, Wong TC. Imaging the area at risk in myocardial infarction with cardiovascular magnetic resonance. J Am Heart Assoc. 2014;3, e001253.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005;26(15):1461–74.

    Article  PubMed  Google Scholar 

  43. Maron MS, Appelbaum E, Harrigan CJ, et al. Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circulation Heart Failure. 2008;1(3):184–91.

    Article  PubMed  Google Scholar 

  44. Assomull RG, Prasad SK, Lyne J, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48(10):1977–85.

    Article  PubMed  Google Scholar 

  45. Abdel-Aty H, Boye P, Zagrosek A, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol. 2005;45(11):1815–22.

    Article  PubMed  Google Scholar 

  46. Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130(6):484–95.

    Article  PubMed  Google Scholar 

  47. Bello D, Shah DJ, Farah GM, et al. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation. 2003;108(16):1945–53.

    Article  CAS  PubMed  Google Scholar 

  48. Gulati A, Jabbour A, Ismail TF, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309(9):896–908. This article demonstrates the increased risks for many adverse outcomes when macroscopic myocardial fibrosis is detected with late gadolinium enhancement cardiovascular magnetic resonance.

    Article  CAS  PubMed  Google Scholar 

  49. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.

    Article  CAS  PubMed  Google Scholar 

  50. Wong TC, Piehler KM, Zareba KM, et al. Myocardial damage detected by late gadolinium enhancement cardiovascular magnetic resonance is associated with subsequent hospitalization for heart failure. J Am Heart Assoc. 2013;2(6), e000416.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Masci PG, Doulaptsis C, Bertella E, et al. Incremental prognostic value of myocardial fibrosis in patients with non-ischemic cardiomyopathy without congestive heart failure. Circulation Heart failure. 2014;7(3):448–56.

    Article  PubMed  Google Scholar 

  52. Sado DM, Flett AS, Banypersad SM, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart. 2012.

  53. Kellman P, Wilson JR, Xue H, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson. 2012;14:64.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Flett AS, Hasleton J, Cook C, et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging. 2011;4(2):150–6.

    Article  PubMed  Google Scholar 

  55. Kwong RY, Farzaneh-Far A. Measuring myocardial scar by CMR. JACC Cardiovascular Imaging. 2011;4(2):157–60.

    Article  PubMed  Google Scholar 

  56. Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2014;36(4):244–51.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92. This article by experts summarizes key technical issues for myocardial fibrosis measurement with cardiovascular magnetic resonance extracellular volume fraction measures.

    Article  PubMed Central  PubMed  Google Scholar 

  58. White SK, Sado DM, Flett AS, Moon JC. Characterizing the myocardial interstitial space: the clinical relevance of non-invasive imaging. Heart. 2012;98(10):773–9.

    Article  PubMed  Google Scholar 

  59. Nacif MS, Kawel N, Lee JJ, et al. Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology. 2012;264(3):876–83.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Timothy C. Wong received support from a Scientist Development grant from the American Heart Association and the Children’s Cardiomyopathy Foundation.

Erik B. Schelbert has received an MRI contrast agent donated by Bracco Diagnostics for research purposes.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik B. Schelbert.

Additional information

This article is part of the Topical Collection on Cardiovascular Disease in the Elderly

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, T.C., Schelbert, E.B. The Implications and Assessment of Myocardial Fibrosis in Older Cardiovascular Patients. Curr Geri Rep 4, 362–367 (2015). https://doi.org/10.1007/s13670-015-0146-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13670-015-0146-5

Keywords

Navigation