Skip to main content

Advertisement

Log in

Dietary Interventions to Prevent or Delay Alzheimer’s Disease: What the Evidence Shows

  • Nutrition and Aging (Y Gu, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

A variety of potentially modifiable risk factors have been investigated in an attempt to delay/prevent Alzheimer’s disease (AD). Among these, dietary regimens and nutritional supplements have been most extensively studied. The purpose of this article is to critically review recent evidence for the Mediterranean/MIND diets along with the use of various vitamins and popular herbal supplements, including curcumin, Ginkgo biloba, and fish oil, among others.

Recent Findings

The Mediterranean and MIND diets are supported by observational studies performed in community settings, especially in the group with high adherence to the Mediterranean diet and with moderate–high adherence to the MIND diet. Randomized controlled trials of various vitamins and supplements have, in general, not shown statistically significant results, although there has been some promising evidence for vitamin D supplementation and curcumin use.

Summary

There is sufficient data to recommend the Mediterranean and MIND diets to delay the onset of AD. It is judicious to supplement vitamin D, especially in deficient patients, and to consider the use of curcumin to improve cognitive performance. Future research should focus on larger, controlled trials in diverse populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Prince MJ. World Alzheimer report 2014: dementia and risk reduction: an analysis of protective and modifiable factors. Alzheimer’s Dis Int. 2014.

  2. Association As. 2019 Alzheimer's disease facts and figures. Alzheimers Dement. 2019;15(3):321–87.

    Article  Google Scholar 

  3. Organization WH. Risk reduction of cognitive decline and dementia: WHO guidelines. Risk reduction of cognitive decline and dementia: WHO guidelines. 2019. p. 401-.

  4. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673–734.

    Article  PubMed  Google Scholar 

  5. Keys A. Coronary heart disease in seven countries. Circulation. 1970;41(1):186–95.

    Google Scholar 

  6. •• Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA. Mediterranean diet and mild cognitive impairment. Arch Neurol. 2009;66(2):216–25. https://doi.org/10.1001/archneurol.2008.536This observational study was one of the first major studies designed to investigate the link between the Mediterranean diet and Alzheimer’s risk reduction, which it succeeded in finding.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348(26):2599–608.

    Article  PubMed  Google Scholar 

  8. Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG. Alzheimer's disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26(1):33. https://doi.org/10.1186/s12929-019-0524-y.

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Wilde MC, Vellas B, Girault E, Yavuz AC, Sijben JW. Lower brain and blood nutrient status in Alzheimer's disease: results from meta-analyses. Alzheimers Dement (N Y). 2017;3(3):416–31. https://doi.org/10.1016/j.trci.2017.06.002.

    Article  Google Scholar 

  10. Casas R, Sacanella E, Urpí-Sardà M, Corella D, Castañer O, Lamuela-Raventos R-M, et al. Long-term Immunomodulatory effects of a Mediterranean diet in adults at high risk of cardiovascular disease in the PREvención con DIeta MEDiterránea (PREDIMED) randomized controlled trial. J Nutr. 2016;146(9):1684–93. https://doi.org/10.3945/jn.115.229476.

    Article  CAS  PubMed  Google Scholar 

  11. Hayden KM, Beavers DP, Steck SE, Hebert JR, Tabung FK, Shivappa N, et al. The association between an inflammatory diet and global cognitive function and incident dementia in older women: the Women's Health Initiative memory study. Alzheimers Dement. 2017;13(11):1187–96. https://doi.org/10.1016/j.jalz.2017.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Omar SH. Mediterranean and MIND Diets containing olive biophenols reduces the prevalence of Alzheimer's disease. Int J Mol Sci. 2019;20(11). https://doi.org/10.3390/ijms20112797.

  13. Holland TM, Agarwal P, Wang Y, Leurgans SE, Bennett DA, Booth SL, et al. Dietary flavonols and risk of Alzheimer dementia. Neurology. 2020;94:e1749–56. https://doi.org/10.1212/WNL.0000000000008981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anastasiou CA, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou GM, Sakka P, et al. Mediterranean diet and cognitive health: initial results from the Hellenic longitudinal investigation of ageing and diet. PLoS One. 2017;12(8):e0182048. https://doi.org/10.1371/journal.pone.0182048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berti V, Walters M, Sterling J, Quinn CG, Logue M, Andrews R, et al. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology. 2018;90(20):e1789–e98. https://doi.org/10.1212/WNL.0000000000005527.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mosconi L, Walters M, Sterling J, Quinn C, McHugh P, Andrews RE, et al. Lifestyle and vascular risk effects on MRI-based biomarkers of Alzheimer’s disease: a cross-sectional study of middle-aged adults from the broader New York City area. BMJ Open. 2018;8(3):e019362. https://doi.org/10.1136/bmjopen-2017-019362.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Karstens AJ, Tussing-Humphreys L, Zhan L, Rajendran N, Cohen J, Dion C, et al. Associations of the Mediterranean diet with cognitive and neuroimaging phenotypes of dementia in healthy older adults. Am J Clin Nutr. 2019;109(2):361–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Samieri C, Pelletier A, Barul C, Féart C, Helmer C, Bernard C, et al. P1–262: The Mediterranean diet and preservation of brain connectivity in older subjects. Alzheimer’s Dement. 2015;11(7S_Part_9):P454–P5. https://doi.org/10.1016/j.jalz.2015.06.463.

    Article  Google Scholar 

  19. Gu Y, Brickman AM, Stern Y, Habeck CG, Razlighi QR, Luchsinger JA, et al. Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology. 2015;85(20):1744–51. https://doi.org/10.1212/wnl.0000000000002121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu L, Sun D. Adherence to Mediterranean diet and risk of developing cognitive disorders: an updated systematic review and meta-analysis of prospective cohort studies. Sci Rep. 2017;7:41317. https://doi.org/10.1038/srep41317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loughrey DG, Lavecchia S, Brennan S, Lawlor BA, Kelly ME. The impact of the Mediterranean diet on the cognitive functioning of healthy older adults: a systematic review and meta-analysis. Adv Nutr. 2017;8(4):571–86. https://doi.org/10.3945/an.117.015495.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marseglia A, Xu W, Fratiglioni L, Fabbri C, Berendsen AAM, Bialecka-Debek A, et al. Effect of the NU-AGE diet on cognitive functioning in older adults: a randomized controlled trial. Front Physiol. 2018;9:349. https://doi.org/10.3389/fphys.2018.00349.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Knight A, Bryan J, Wilson C, Hodgson JM, Davis CR, Murphy KJ. The Mediterranean diet and cognitive function among healthy older adults in a 6-month randomised controlled trial: the MedLey Study. Nutrients. 2016;8(9). https://doi.org/10.3390/nu8090579.

  24. Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, de la Torre R, Martinez-Gonzalez MA, et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med. 2015;175(7):1094–103. https://doi.org/10.1001/jamainternmed.2015.1668.

    Article  PubMed  Google Scholar 

  25. Martinez-Lapiscina EH, Clavero P, Toledo E, Estruch R, Salas-Salvado J, San Julian B, et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013;84(12):1318–25. https://doi.org/10.1136/jnnp-2012-304792.

    Article  PubMed  Google Scholar 

  26. Martinez-Lapiscina EH, Clavero P, Toledo E, San Julian B, Sanchez-Tainta A, Corella D, et al. Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized trial. J Nutr Health Aging. 2013;17(6):544–52.

    Article  CAS  PubMed  Google Scholar 

  27. Wardle J, Rogers P, Judd P, Taylor MA, Rapoport L, Green M, et al. Randomized trial of the effects of cholesterol-lowering dietary treatment on psychological function. Am J Med. 2000;108(7):547–53.

    Article  CAS  PubMed  Google Scholar 

  28. Petersson SD, Philippou E. Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence. Adv Nutr. 2016;7(5):889–904. https://doi.org/10.3945/an.116.012138.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aridi YS, Walker JL, Wright ORL. The association between the Mediterranean dietary pattern and cognitive health: a systematic review. Nutrients. 2017;9(7). https://doi.org/10.3390/nu9070674.

  30. • Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015–22. https://doi.org/10.1016/j.jalz.2015.04.011Building on both the Mediterranean and DASH diets, the MIND diet is among the first diets designed specifically for preservation of cognitive function. This 10-year study established the efficacy of the MIND diet as a method of slowing cognitive decline.

    Article  PubMed  PubMed Central  Google Scholar 

  31. • Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11(9):1007–14. https://doi.org/10.1016/j.jalz.2014.11.009While the other 2015 Morris et al. study showed that the MIND diet slowed cognitive decline, this was the first study to compare the MIND diet to its individual predecessors (Mediterranean and DASH diets). The results were significant for showing that higher adherence to all three was associated with reduced AD risk, though only moderate MIND adherence was sufficient for risk reduction.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Willis LM, Shukitt-Hale B, Joseph JA. Recent advances in berry supplementation and age-related cognitive decline. Curr Opin Clin Nutr Metab Care. 2009;12(1):91–4.

    Article  CAS  PubMed  Google Scholar 

  33. Devore EE, Kang JH, Breteler MM, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012;72(1):135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang JH, Ascherio A, Grodstein F. Fruit and vegetable consumption and cognitive decline in aging women. Ann Neurol. 2005;57(5):713–20.

    Article  PubMed  Google Scholar 

  35. Morris M, Evans D, Tangney C, Bienias J, Wilson R. Associations of vegetable and fruit consumption with age-related cognitive change. Neurology. 2006;67(8):1370–6.

    Article  CAS  PubMed  Google Scholar 

  36. Bennett D, Schneider J, Buchman A, Barnes L, Boyle P, Wilson R. Overview and findings from the rush memory and aging project. Curr Alzheimer Res. 2012;9(6):646–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McEvoy CT, Guyer H, Langa KM, Yaffe K. Neuroprotective diets are associated with better cognitive function: the health and retirement study. J Am Geriatr Soc. 2017;65(8):1857–62.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Calil SRB, Brucki SMD, Nitrini R, Yassuda MS. Adherence to the Mediterranean and MIND diets is associated with better cognition in healthy seniors but not in MCI or AD. Clin Nutr ESPEN. 2018;28:201–7. https://doi.org/10.1016/j.clnesp.2018.08.001.

    Article  PubMed  Google Scholar 

  39. Hosking DE, Eramudugolla R, Cherbuin N, Anstey KJ. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement. 2019;15(4):581–9. https://doi.org/10.1016/j.jalz.2018.12.011.

    Article  PubMed  Google Scholar 

  40. Crichton GE, Elias MF, Davey A, Alkerwi AA, Dore GA. Higher cognitive performance is prospectively associated with healthy dietary choices: the Maine Syracuse Longitudinal Study. J Prev Alzheimer’s Dis. 2015;2(1):24.

    CAS  Google Scholar 

  41. Koch M, Jensen MK. Association of the MIND diet with cognition and risk of Alzheimer’s disease. Curr Opin Lipidol. 2016;27(3):303–4.

    Article  CAS  PubMed  Google Scholar 

  42. Croteau E, Castellano CA, Fortier M, Bocti C, Fulop T, Paquet N, et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol. 2018;107:18–26. https://doi.org/10.1016/j.exger.2017.07.004.

    Article  CAS  PubMed  Google Scholar 

  43. deCampo DM, Kossoff EH. Ketogenic dietary therapies for epilepsy and beyond. Curr Opin Clin Nutr Metab Care. 2019;22(4):264–8. https://doi.org/10.1097/MCO.0000000000000565.

    Article  PubMed  Google Scholar 

  44. Taylor MK, Sullivan DK, Mahnken JD, Burns JM, Swerdlow RH. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer's disease. Alzheimers Dement (N Y). 2018;4:28–36. https://doi.org/10.1016/j.trci.2017.11.002.

    Article  Google Scholar 

  45. Brandt J, Buchholz A, Henry-Barron B, Vizthum D, Avramopoulos D, Cervenka MC. Preliminary report on the feasibility and efficacy of the modified Atkins diet for treatment of mild cognitive impairment and early Alzheimer's disease. J Alzheimers Dis. 2019;68(3):969–81. https://doi.org/10.3233/JAD-180995.

    Article  CAS  PubMed  Google Scholar 

  46. Croteau E, Castellano CA, Richard MA, Fortier M, Nugent S, Lepage M, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer's disease. J Alzheimers Dis. 2018;64(2):551–61. https://doi.org/10.3233/JAD-180202.

    Article  CAS  PubMed  Google Scholar 

  47. Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond). 2009;6:31. https://doi.org/10.1186/1743-7075-6-31.

    Article  CAS  Google Scholar 

  48. Abe S, Ezaki O, Suzuki M. Medium-chain triglycerides in combination with leucine and vitamin D benefit cognition in frail elderly adults: a randomized controlled trial. J Nutr Sci Vitaminol. 2017;63(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  49. Reger MA, Henderson ST, Hale C, Cholerton B, Baker LD, Watson GS, et al. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging. 2004;25(3):311–4. https://doi.org/10.1016/s0197-4580(03)00087-3.

    Article  CAS  PubMed  Google Scholar 

  50. Kirkpatrick CF, Bolick JP, Kris-Etherton PM, Sikand G, Aspry KE, Soffer DE, et al. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: a scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J Clin Lipidol. 2019;13(5):689–711 e1. https://doi.org/10.1016/j.jacl.2019.08.003.

    Article  PubMed  Google Scholar 

  51. Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, et al. Plasma nutrient status of patients with Alzheimer's disease: systematic review and meta-analysis. Alzheimers Dement. 2014;10(4):485–502. https://doi.org/10.1016/j.jalz.2013.05.1771.

    Article  PubMed  Google Scholar 

  52. Hooshmand B, Polvikoski T, Kivipelto M, Tanskanen M, Myllykangas L, Erkinjuntti T, et al. Plasma homocysteine, Alzheimer and cerebrovascular pathology: a population-based autopsy study. Brain. 2013;136(Pt 9):2707–16. https://doi.org/10.1093/brain/awt206.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tan B, Venketasubramanian N, Vrooman H, Cheng CY, Wong TY, Ikram MK, et al. Homocysteine and cerebral atrophy: the epidemiology of dementia in Singapore study. J Alzheimers Dis. 2018;62(2):877–85. https://doi.org/10.3233/JAD-170796.

    Article  CAS  PubMed  Google Scholar 

  54. Smith AD, Refsum H, Bottiglieri T, Fenech M, Hooshmand B, McCaddon A, et al. Homocysteine and dementia: an international consensus statement. J Alzheimers Dis. 2018;62(2):561–70. https://doi.org/10.3233/JAD-171042.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhou F, Chen S. Hyperhomocysteinemia and risk of incident cognitive outcomes: an updated dose-response meta-analysis of prospective cohort studies. Ageing Res Rev. 2019;51:55–66. https://doi.org/10.1016/j.arr.2019.02.006.

    Article  CAS  PubMed  Google Scholar 

  56. Durga J, van Boxtel MPJ, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369(9557):208–16. https://doi.org/10.1016/s0140-6736(07)60109-3.

    Article  CAS  PubMed  Google Scholar 

  57. Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244. https://doi.org/10.1371/journal.pone.0012244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ford A, Flicker L, Alfonso H, Thomas J, Clarnette R, Martins R, et al. Vitamins B12, B6, and folic acid for cognition in older men. Neurology. 2010;75(17):1540–7.

    Article  CAS  PubMed  Google Scholar 

  59. Armitage JM, Bowman L, Clarke RJ, Wallendszus K, Bulbulia R, Rahimi K, et al. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: a randomized trial. Jama. 2010;303(24):2486–94.

    Article  CAS  PubMed  Google Scholar 

  60. Hankey GJ, Ford AH, Yi Q, Eikelboom JW, Lees KR, Chen C, et al. Effect of B vitamins and lowering homocysteine on cognitive impairment in patients with previous stroke or transient ischemic attack: a prespecified secondary analysis of a randomized, placebo-controlled trial and meta-analysis. Stroke. 2013;44(8):2232–9. https://doi.org/10.1161/STROKEAHA.113.001886.

    Article  CAS  PubMed  Google Scholar 

  61. Aisen PS, Schneider LS, Sano M, Diaz-Arrastia R, Van Dyck CH, Weiner MF, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ford AH, Almeida OP. Effect of vitamin B supplementation on cognitive function in the elderly: a systematic review and meta-analysis. Drugs Aging. 2019;36(5):419–34. https://doi.org/10.1007/s40266-019-00649-w.

    Article  CAS  PubMed  Google Scholar 

  63. Malouf R, Grimley EJ. Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev. 2008;4:CD004514. https://doi.org/10.1002/14651858.CD004514.pub2.

    Article  Google Scholar 

  64. Rutjes AW, Denton DA, Di Nisio M, Chong LY, Abraham RP, Al-Assaf AS, et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst Rev. 2018;12:CD011906. https://doi.org/10.1002/14651858.CD011906.pub2.

    Article  PubMed  Google Scholar 

  65. Intakes IoMSCotSEoDR. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline: National Academies Press (US); 1998.

  66. Field MS, Stover PJ. Safety of folic acid. Ann N Y Acad Sci. 2018;1414(1):59–71. https://doi.org/10.1111/nyas.13499.

    Article  PubMed  Google Scholar 

  67. Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U. Oxidant/antioxidant imbalance in Alzheimer's disease: therapeutic and diagnostic prospects. Oxidative Med Cell Longev. 2018;2018:6435861–16. https://doi.org/10.1155/2018/6435861.

    Article  CAS  Google Scholar 

  68. Li FJ, Shen L, Ji HF. Dietary intakes of vitamin E, vitamin C, and beta-carotene and risk of Alzheimer's disease: a meta-analysis. J Alzheimers Dis. 2012;31(2):253–8. https://doi.org/10.3233/JAD-2012-120349.

    Article  CAS  PubMed  Google Scholar 

  69. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, et al. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. Jama. 2002;287(24):3230–7.

    Article  CAS  PubMed  Google Scholar 

  70. Fillenbaum GG, Kuchibhatla MN, Hanlon JT, Artz MB, Pieper CF, Schmader KE, et al. Dementia and Alzheimer's disease in community-dwelling elders taking vitamin C and/or vitamin E. Ann Pharmacother. 2005;39(12):2009–14. https://doi.org/10.1345/aph.1G280.

    Article  CAS  PubMed  Google Scholar 

  71. Basambombo LL, Carmichael PH, Cote S, Laurin D. Use of vitamin E and C supplements for the prevention of cognitive decline. Ann Pharmacother. 2017;51(2):118–24. https://doi.org/10.1177/1060028016673072.

    Article  CAS  PubMed  Google Scholar 

  72. Zandi PP, Anthony JC, Khachaturian AS, Stone SV, Gustafson D, Tschanz JT, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County study. Arch Neurol. 2004;61(1):82–8.

    Article  PubMed  Google Scholar 

  73. Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, et al. Association of antioxidant supplement use and dementia in the prevention of Alzheimer's disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol. 2017;74(5):567–73. https://doi.org/10.1001/jamaneurol.2016.5778.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33–44. https://doi.org/10.1001/jama.2013.282834.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352(23):2379–88.

    Article  CAS  PubMed  Google Scholar 

  76. Orces C, Lorenzo C, Guarneros JE. The prevalence and determinants of vitamin D inadequacy among U.S. older adults: National Health and Nutrition Examination Survey 2007–2014. Cureus. 2019;11(8):e5300. https://doi.org/10.7759/cureus.5300.

    Article  PubMed  PubMed Central  Google Scholar 

  77. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8. https://doi.org/10.1172/JCI112134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chai B, Gao F, Wu R, Dong T, Gu C, Lin Q, et al. Vitamin D deficiency as a risk factor for dementia and Alzheimer's disease: an updated meta-analysis. BMC Neurol. 2019;19(1):284. https://doi.org/10.1186/s12883-019-1500-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Balion C, Griffith LE, Strifler L, Henderson M, Patterson C, Heckman G, et al. Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology. 2012;79(13):1397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goodwill AM, Campbell S, Simpson S Jr, Bisignano M, Chiang C, Dennerstein L, et al. Vitamin D status is associated with executive function a decade later: data from the Women's healthy ageing project. Maturitas. 2018;107:56–62. https://doi.org/10.1016/j.maturitas.2017.10.005.

    Article  CAS  PubMed  Google Scholar 

  81. Przybelski R, Agrawal S, Krueger D, Engelke JA, Walbrun F, Binkley N. Rapid correction of low vitamin D status in nursing home residents. Osteoporos Int. 2008;19(11):1621–8. https://doi.org/10.1007/s00198-008-0619-x.

    Article  CAS  PubMed  Google Scholar 

  82. Schietzel S, Fischer K, Brugger P, Orav EJ, Renerts K, Gagesch M, et al. Effect of 2000 IU compared with 800 IU vitamin D on cognitive performance among adults age 60 years and older: a randomized controlled trial. Am J Clin Nutr. 2019;110(1):246–53. https://doi.org/10.1093/ajcn/nqz081.

    Article  PubMed  Google Scholar 

  83. Rossom RC, Espeland MA, Manson JE, Dysken MW, Johnson KC, Lane DS, et al. Calcium and vitamin D supplementation and cognitive impairment in the women's health initiative. J Am Geriatr Soc. 2012;60(12):2197–205. https://doi.org/10.1111/jgs.12032.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood Abeta-related biomarkers in older adults with Alzheimer's disease: a randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry. 2019;90(12):1347–52. https://doi.org/10.1136/jnnp-2018-320199.

    Article  PubMed  Google Scholar 

  85. Beydoun MA, Hossain S, Fanelli-Kuczmarski MT, Beydoun HA, Canas JA, Evans MK, et al. Vitamin D status and intakes and their association with cognitive trajectory in a longitudinal study of urban adults. J Clin Endocrinol Metab. 2018;103(4):1654–68. https://doi.org/10.1210/jc.2017-02462.

    Article  PubMed  PubMed Central  Google Scholar 

  86. da Costa IM, Freire MAM, de Paiva Cavalcanti JRL, de Araujo DP, Norrara B, Moreira Rosa IMM, et al. Supplementation with Curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimer's disease: a systematic review. Curr Neuropharmacol. 2019;17(5):406–21. https://doi.org/10.2174/0929867325666180117112610.

    Article  CAS  PubMed  Google Scholar 

  87. Ng TP, Chiam PC, Lee T, Chua HC, Lim L, Kua EH. Curry consumption and cognitive function in the elderly. Am J Epidemiol. 2006;164(9):898–906. https://doi.org/10.1093/aje/kwj267.

    Article  PubMed  Google Scholar 

  88. Small GW, Siddarth P, Li Z, Miller KJ, Ercoli L, Emerson ND, et al. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am J Geriatr Psychiatry. 2018;26(3):266–77. https://doi.org/10.1016/j.jagp.2017.10.010.

    Article  PubMed  Google Scholar 

  89. Cox KH, Pipingas A, Scholey AB. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol. 2015;29(5):642–51. https://doi.org/10.1177/0269881114552744.

    Article  CAS  PubMed  Google Scholar 

  90. Rainey-Smith SR, Brown BM, Sohrabi HR, Shah T, Goozee KG, Gupta VB, et al. Curcumin and cognition: a randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br J Nutr. 2016;115(12):2106–13. https://doi.org/10.1017/S0007114516001203.

    Article  CAS  PubMed  Google Scholar 

  91. Santos-Parker JR, Lubieniecki KL, Rossman MJ, Van Ark HJ, Bassett CJ, Strahler TR, et al. Curcumin supplementation and motor-cognitive function in healthy middle-aged and older adults. Nutr Health Aging. 2018;4(4):323–33. https://doi.org/10.3233/NHA-170029.

    Article  CAS  Google Scholar 

  92. Baum L, Lam CWK, Cheung SK-K, Kwok T, Lui V, Tsoh J, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol. 2008;28(1):110–3.

    Article  PubMed  Google Scholar 

  93. Ringman JM, Frautschy SA, Teng E, Begum AN, Bardens J, Beigi M, et al. Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther. 2012;4(5):43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hooijmans CR, Pasker-de Jong PC, de Vries RB, Ritskes-Hoitinga M. The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer's pathology in animal models of Alzheimer's disease: a systematic review and meta-analysis. J Alzheimers Dis. 2012;28(1):191–209. https://doi.org/10.3233/JAD-2011-111217.

    Article  CAS  PubMed  Google Scholar 

  95. Kerdiles O, Layé S, Calon F. Omega-3 polyunsaturated fatty acids and brain health: preclinical evidence for the prevention of neurodegenerative diseases. Trends Food Sci Technol. 2017;69:203–13. https://doi.org/10.1016/j.tifs.2017.09.003.

    Article  CAS  Google Scholar 

  96. Wu S, Ding Y, Wu F, Li R, Hou J, Mao P. Omega-3 fatty acids intake and risks of dementia and Alzheimer's disease: a meta-analysis. Neurosci Biobehav Rev. 2015;48:1–9. https://doi.org/10.1016/j.neubiorev.2014.11.008.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang Y, Chen J, Qiu J, Li Y, Wang J, Jiao J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr. 2016;103(2):330–40. https://doi.org/10.3945/ajcn.115.124081.

    Article  CAS  PubMed  Google Scholar 

  98. Geleijnse JM, Giltay EJ, Kromhout D. Effects of n-3 fatty acids on cognitive decline: a randomized, double-blind, placebo-controlled trial in stable myocardial infarction patients. Alzheimers Dement. 2012;8(4):278–87. https://doi.org/10.1016/j.jalz.2011.06.002.

    Article  CAS  PubMed  Google Scholar 

  99. Dangour AD, Allen E, Elbourne D, Fasey N, Fletcher AE, Hardy P, et al. Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. Am J Clin Nutr. 2010;91(6):1725–32. https://doi.org/10.3945/ajcn.2009.29121.

    Article  CAS  PubMed  Google Scholar 

  100. Chew EY, Clemons TE, Agron E, Launer LJ, Grodstein F, Bernstein PS, et al. Effect of omega-3 fatty acids, lutein/zeaxanthin, or other nutrient supplementation on cognitive function: the AREDS2 randomized clinical trial. JAMA. 2015;314(8):791–801. https://doi.org/10.1001/jama.2015.9677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Andrieu S, Guyonnet S, Coley N, Cantet C, Bonnefoy M, Bordes S, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol. 2017;16(5):377–89. https://doi.org/10.1016/s1474-4422(17)30040-6.

    Article  CAS  PubMed  Google Scholar 

  102. Kulzow N, Witte AV, Kerti L, Grittner U, Schuchardt JP, Hahn A, et al. Impact of omega-3 fatty acid supplementation on memory functions in healthy older adults. J Alzheimers Dis. 2016;51(3):713–25. https://doi.org/10.3233/JAD-150886.

    Article  CAS  PubMed  Google Scholar 

  103. Nilsson A, Radeborg K, Salo I, Björck I. Effects of supplementation with n-3 polyunsaturated fatty acids on cognitive performance and cardiometabolic risk markers in healthy 51 to 72 years old subjects: a randomized controlled cross-over study. Nutr J. 2012;11(1):99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Witte AV, Kerti L, Hermannstadter HM, Fiebach JB, Schreiber SJ, Schuchardt JP, et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex. 2014;24(11):3059–68. https://doi.org/10.1093/cercor/bht163.

    Article  PubMed  Google Scholar 

  105. Alex A, Abbott KA, McEvoy M, Schofield PW, Garg ML. Long-chain omega-3 polyunsaturated fatty acids and cognitive decline in non-demented adults: a systematic review and meta-analysis. Nutr Rev. 2019;78:563–78. https://doi.org/10.1093/nutrit/nuz073.

    Article  Google Scholar 

  106. Freund-Levi Y, Eriksdotter-Jönhagen M, Cederholm T, Basun H, Faxen-Irving G, Garlind A, et al. ω-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol. 2006;63(10):1402–8.

    Article  PubMed  Google Scholar 

  107. Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. Jama. 2010;304(17):1903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shinto L, Quinn J, Montine T, Dodge HH, Woodward W, Baldauf-Wagner S, et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer's disease. J Alzheimers Dis. 2014;38(1):111–20. https://doi.org/10.3233/JAD-130722.

    Article  CAS  PubMed  Google Scholar 

  109. Burckhardt M, Herke M, Wustmann T, Watzke S, Langer G, Fink A. Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev. 2016;4:CD009002. https://doi.org/10.1002/14651858.CD009002.pub3.

    Article  PubMed  Google Scholar 

  110. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2020;3:CD003177. https://doi.org/10.1002/14651858.CD003177.pub5.

    Article  PubMed  Google Scholar 

  111. DeKosky ST, Williamson JD, Fitzpatrick AL, Kronmal RA, Ives DG, Saxton JA, et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA. 2008;300(19):2253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Snitz BE, O’Meara ES, Carlson MC, Arnold AM, Ives DG, Rapp SR, et al. Ginkgo biloba for preventing cognitive decline in older adults: a randomized trial. JAMA. 2009;302(24):2663–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vellas B, Coley N, Ousset P-J, Berrut G, Dartigues J-F, Dubois B, et al. Long-term use of standardised ginkgo biloba extract for the prevention of Alzheimer's disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol. 2012;11(10):851–9. https://doi.org/10.1016/s1474-4422(12)70206-5.

    Article  CAS  PubMed  Google Scholar 

  114. Dodge HH, Zitzelberger T, Oken BS, Howieson D, Kaye J. A randomized placebo-controlled trial of Ginkgo biloba for the prevention of cognitive decline. Neurology. 2008;70(19 Pt 2):1809–17. https://doi.org/10.1212/01.wnl.0000303814.13509.db.

    Article  CAS  PubMed  Google Scholar 

  115. Birks J, Grimley EJ. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;1:CD003120. https://doi.org/10.1002/14651858.CD003120.pub3.

    Article  Google Scholar 

  116. Gauthier S, Schlaefke S. Efficacy and tolerability of Ginkgo biloba extract EGb 761(R) in dementia: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Interv Aging. 2014;9:2065–77. https://doi.org/10.2147/CIA.S72728.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Savaskan E, Mueller H, Hoerr R, von Gunten A, Gauthier S. Treatment effects of Ginkgo biloba extract EGb 761(R) on the spectrum of behavioral and psychological symptoms of dementia: meta-analysis of randomized controlled trials. Int Psychogeriatr. 2018;30(3):285–93. https://doi.org/10.1017/S1041610217001892.

    Article  PubMed  Google Scholar 

  118. Tan M-S, Yu J-T, Tan C-C, Wang H-F, Meng X-F, Wang C, et al. Efficacy and adverse effects of Ginkgo biloba for cognitive impairment and dementia: a systematic review and meta-analysis. J Alzheimers Dis. 2014;43(2):589–603. https://doi.org/10.3233/jad-140837.

    Article  Google Scholar 

  119. Solomon PR, Adams F, Silver A, Zimmer J, DeVeaux R. Ginkgo for memory enhancement: a randomized controlled trial. JAMA. 2002;288(7):835–40.

    Article  PubMed  Google Scholar 

  120. Sun M, Ma K, Wen J, Wang G, Zhang C, Li Q, et al. A review of the brain–gut–microbiome axis and the potential role of microbiota in Alzheimer's disease. J Alzheimers Dis. 2020;73(3):849–65. https://doi.org/10.3233/JAD-190872.

    Article  PubMed  Google Scholar 

  121. Szablewski L. Human gut microbiota in health and Alzheimer's disease. J Alzheimers Dis. 2018;62(2):549–60. https://doi.org/10.3233/JAD-170908.

    Article  PubMed  Google Scholar 

  122. Haran JP, Bhattarai SK, Foley SE, Dutta P, Ward DV, Bucci V, et al. Alzheimer's disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mBio. 2019;10(3). https://doi.org/10.1128/mBio.00632-19.

  123. Tran TTT, Corsini S, Kellingray L, Hegarty C, Le Gall G, Narbad A, et al. APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer's disease pathophysiology. FASEB J. 2019;33(7):8221–31. https://doi.org/10.1096/fj.201900071R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim MS, Kim Y, Choi H, Kim W, Park S, Lee D, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model. Gut. 2020;69(2):283–94. https://doi.org/10.1136/gutjnl-2018-317431.

    Article  PubMed  Google Scholar 

  125. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, NY). 2011;334(6052):105–8. https://doi.org/10.1126/science.1208344.

    Article  CAS  Google Scholar 

  126. Ghosh TS, Rampelli S, Jeffery IB, Santoro A, Neto M, Capri M, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut. 2020;69:1218–28. https://doi.org/10.1136/gutjnl-2019-319654.

    Article  PubMed  Google Scholar 

  127. Cowan TE, Palmnas MS, Yang J, Bomhof MR, Ardell KL, Reimer RA, et al. Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. J Nutr Biochem. 2014;25(4):489–95. https://doi.org/10.1016/j.jnutbio.2013.12.009.

    Article  CAS  PubMed  Google Scholar 

  128. Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis. 2009;16(1):85–91. https://doi.org/10.3233/JAD-2009-0920.

    Article  CAS  PubMed  Google Scholar 

  129. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front Aging Neurosci. 2016;8:256. https://doi.org/10.3389/fnagi.2016.00256.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Den H, Dong X, Chen M, Zou Z. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer's disease or mild cognitive impairment-a meta-analysis of randomized controlled trials. Aging. 2020;12:4010–39.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, et al. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: a randomized, double-blind, controlled trial. Clin Nutr. 2019;38(6):2569–75. https://doi.org/10.1016/j.clnu.2018.11.034.

    Article  CAS  PubMed  Google Scholar 

  132. Hwang YH, Park S, Paik JW, Chae SW, Kim DH, Jeong DG, et al. Efficacy and safety of Lactobacillus plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: a 12-week, multi-center, randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2019;11(2). https://doi.org/10.3390/nu11020305.

  133. Syed YY. Sodium oligomannate: first approval. Drugs. 2020;80:441–4. https://doi.org/10.1007/s40265-020-01268-1.

    Article  PubMed  Google Scholar 

  134. Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29(10):787–803. https://doi.org/10.1038/s41422-019-0216-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binu Chakkamparambil.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition and Aging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartochowski, Z., Conway, J., Wallach, Y. et al. Dietary Interventions to Prevent or Delay Alzheimer’s Disease: What the Evidence Shows. Curr Nutr Rep 9, 210–225 (2020). https://doi.org/10.1007/s13668-020-00333-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-020-00333-1

Keywords

Navigation