Skip to main content

Advertisement

Log in

High-Resolution Computed Tomography Evaluation of Interstitial Lung Disease for the Pulmonologist

  • Pulmonary Radiology (M Stephens and S Kapur, Section Editors)
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Interstitial lung disease encompasses variety of entities that have diverse clinical manifestations, prognosis, and treatment options. It is imperative to identify the specific disease early as delays in diagnosis can lead to irreversible damage. Studies demonstrate that treatment with certain medications and avoidance of exposures that potentiate injury can reduce disease progression.

Recent Findings

The use of high-resolution computed tomography has become essential for the evaluation of interstitial lung disease. Being able to accurately identify the characteristic patterns of abnormalities can lead to expedited diagnosis and has obviated the need of other diagnostic studies such as lung biopsy.

Summary

High-resolution computed tomography imaging of the chest has changed the approach to the diagnosis and treatment of interstitial lung diseases. Given the numerous entities that compose this group and options for individualized treatment plans, it is imperative for pulmonologists to recognize the defining imaging characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Image 11
Image 12
Image 13

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. European RS, Society AT (2002) American Thoracic Society/European Respiratory Society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS executive committee, June 2001. 165:277.

  2. •• Travis WD, Costabel U, Hansell DM, King Jr TE, Lynch DA, Nicholson AG, Ryerson CJ, Ryu JH, Selman M, Wells AU (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. 188:733–748. Current ATS/ERS guideline updates that guide ILDs diagnosis and management.

  3. Duarte AC, Vinagre F, Soares J, Cordeiro A (2019) Antifibrotics in interstitial lung disease related to connective tissue diseases-a paradigm shift in treatment and outcome. 44:161–162.

  4. Vancheri C, Kreuter M, Richeldi L, Ryerson CJ, Valeyre D, Grutters JC, Wiebe S, Stansen W, Quaresma M, Stowasser S (2018) Nintedanib with add-on pirfenidone in idiopathic pulmonary fibrosis. Results of the INJOURNEY trial 197:356–363.

  5. Flaherty KR, Fell CD, Huggins JT, Nunes H, Sussman R, Valenzuela C, Petzinger U, Stauffer JL, Gilberg F, Bengus M (2018) Safety of nintedanib added to pirfenidone treatment for idiopathic pulmonary fibrosis. 52:1800230.

  6. Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med. 2015;192(2):e3–19.

    PubMed  Google Scholar 

  7. Dempsey TM, Sangaralingham LR, Yao X, Limper AH. Adoption of the anti-fibrotic medications pirfenidone and nintedanib among commercially-insured adults in the United States. InD22. Real world medication use in pulmoanry diseases 2019 May (pp. A5920-A5920). Am Thorac Soc.

  8. • Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Flaherty KR. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198(5):e44–68 Important publication by ATS discussing reclassification of UIP and diagnosis of IPF.

    PubMed  Google Scholar 

  9. Chung JH, Goldin JG. Interpretation of HRCT scans in the diagnosis of IPF: improving communication between pulmonologists and radiologists. Lung. 2018;196(5):561–7.

    PubMed  PubMed Central  Google Scholar 

  10. Rosado-de-Christenson ML. Imaging modalities. Chest Imaging. 2019;6:2.

    Google Scholar 

  11. Jacob J, Hansell DM. HRCT of fibrosing lung disease. Respirology. 2015;20(6):859–72.

    PubMed  Google Scholar 

  12. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697–722.

    PubMed  Google Scholar 

  13. Elicker BM, Webb WR. Fundamentals of high-resolution lung CT: common findings, common patterns, common diseases and differential diagnosis: Lippincott Williams & Wilkins; 2018.

  14. Ebner L, Christodoulidis S, Stathopoulou T, Geiser T, Stalder O, Limacher A, et al. Meta-analysis of the radiological and clinical features of usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP). PLoS One. 2020;15(1):e0226084.

    PubMed  PubMed Central  Google Scholar 

  15. Salvatore M, Smith ML. Cross sectional imaging of pulmonary fibrosis translating pathology into radiology. Clin Imaging. 2018;51:332–6.

    PubMed  Google Scholar 

  16. Dias OM, Baldi BG, Pennati F, Aliverti A, Chate RC, Sawamura MV, et al. Computed tomography in hypersensitivity pneumonitis: main findings, differential diagnosis and pitfalls. Expert Rev Respir Med. 2018;12(1):5–13.

    CAS  PubMed  Google Scholar 

  17. Wong AW, Liang J, Cottin V, Ryerson CJ. Diagnostic features in combined pulmonary fibrosis and emphysema: a systematic review. InB42. ILD EPIDEMIOLOGY I 2020 May (pp. A3374-A3374). Am Thorac Soc.

  18. Bolaki M, Antoniou KM. Combined pulmonary fibrosis and emphysema. InSeminars in respiratory and critical care medicine 2020 Apr (Vol. 41, no. 02, pp. 177-183). Thieme Medical Publishers.

  19. Chua F, Desai SR, Nicholson AG, Devaraj A, Renzoni E, Rice A, et al. Pleuroparenchymal fibroelastosis. A review of clinical, radiological, and pathological characteristics. Ann Am Thorac Soc. 2019;16(11):1351–9.

    PubMed  PubMed Central  Google Scholar 

  20. Mengoli MC, Colby T, Dubini A, Rossi G, Cavazza A. Pleuroparenchymal Fibroelastosis. In Transbronchial cryobiopsy in diffuse parenchymal lung disease 2019 (pp. 141-147). Springer, Cham.

  21. Yagihashi K, Huckleberry J, Colby TV, Tazelaar HD, Zach J, Sundaram B, et al. Radiologic–pathologic discordance in biopsy-proven usual interstitial pneumonia. Eur Respir J. 2016;47(4):1189–97.

    PubMed  Google Scholar 

  22. Yunt ZX, Chung JH, Hobbs S, Fernandez-Perez ER, Olson AL, Huie TJ, et al. High resolution computed tomography pattern of usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease: relationship to survival. Respir Med. 2017;126:100–4.

    PubMed  Google Scholar 

  23. Yamakawa H, Sato S, Nishizawa T, Kawabe R, Oba T, Kato A, et al. Impact of radiological honeycombing in rheumatoid arthritis-associated interstitial lung disease. BMC Pulm Med. 2020;20(1):1–7.

    Google Scholar 

  24. Brownell R, Moua T, Henry TS, Elicker BM, White D, Vittinghoff E, et al. The use of pretest probability increases the value of high-resolution CT in diagnosing usual interstitial pneumonia. Thorax. 2017;72(5):424–9.

    PubMed  PubMed Central  Google Scholar 

  25. Raghu G, Remy-Jardin M, Myers J, Richeldi L, Wilson KC. The 2018 diagnosis of idiopathic pulmonary fibrosis guidelines: surgical lung biopsy for radiological pattern of probable usual interstitial pneumonia is not mandatory.

  26. Arakawa H, Kishimoto T, Ashizawa K, Kato K, Okamoto K, Honma K, et al. Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations. Eur Radiol. 2016;26(5):1485–92.

    PubMed  Google Scholar 

  27. Kono M, Nakamura Y, Yoshimura K, Enomoto Y, Oyama Y, Hozumi H, et al. Nonspecific interstitial pneumonia preceding diagnosis of collagen vascular disease. Respir Med. 2016;117:40–7.

    PubMed  Google Scholar 

  28. Zhan X, Koelsch T, Montner SM, Zhu A, Vij R, Swigris JJ, et al. Differentiating usual interstitial pneumonia from nonspecific interstitial pneumonia using high-resolution computed tomography. J Thorac Imaging. 2018;33(4):266–70.

    PubMed  Google Scholar 

  29. Gharsalli H, Attia M, Hantous-Zannad S, Sahnoun I, Maalej S, El Gharbi LD, et al. Interstitial lung diseases associated with connective tissue pathologies: radiologic features. Open J Respir Dis. 2019;9(04):112–22.

    Google Scholar 

  30. Kligerman SJ, Groshong S, Brown KK, Lynch DA. Nonspecific interstitial pneumonia: radiologic, clinical, and pathologic considerations. Radiographics. 2009;29(1):73–87.

    PubMed  Google Scholar 

  31. Park IN, Jegal Y, Kim DS, Do KH, Yoo B, Shim TS, et al. Clinical course and lung function change of idiopathic nonspecific interstitial pneumonia. Eur Respir J. 2009;33(1):68–76.

    CAS  PubMed  Google Scholar 

  32. Yoshimura K, Kono M, Enomoto Y, Nishimoto K, Oyama Y, Yasui H, et al. Distinctive characteristics and prognostic significance of interstitial pneumonia with autoimmune features in patients with chronic fibrosing interstitial pneumonia. Respir Med. 2018;137:167–75.

    PubMed  Google Scholar 

  33. Sforza GG, Marinou A. Hypersensitivity pneumonitis: a complex lung disease. Clin Mol Allergy. 2017;15(1):6.

    Google Scholar 

  34. Vasakova M, Morell F, Walsh S, Leslie K, Raghu G. Hypersensitivity pneumonitis: perspectives in diagnosis and management. Am J Respir Crit Care Med. 2017;196(6):680–9.

    PubMed  Google Scholar 

  35. Silva CI, Churg A, Müller NL. Hypersensitivity pneumonitis: spectrum of high-resolution CT and pathologic findings. Am J Roentgenol. 2007;188(2):334–44.

    Google Scholar 

  36. Morisset J, Johannson KA, Jones KD, Wolters PJ, Collard HR, Walsh SL, et al. Identification of diagnostic criteria for chronic hypersensitivity pneumonitis. An International Modified Delphi survey. Am J Respir Crit Care Med. 2018;197(8):1036–44.

    PubMed  PubMed Central  Google Scholar 

  37. Hirschmann JV, Pipavath SN, Godwin JD. Hypersensitivity pneumonitis: a historical, clinical, and radiologic review. Radiographics. 2009;29(7):1921–38.

    PubMed  Google Scholar 

  38. Chiba S, Tsuchiya K, Akashi T, Ishizuka M, Okamoto T, Furusawa H, et al. Chronic hypersensitivity pneumonitis with a usual interstitial pneumonia-like pattern: correlation between histopathologic and clinical findings. Chest. 2016;149(6):1473–81.

    PubMed  Google Scholar 

  39. Sousa C, Rodrigues M, Carvalho A, Viamonte B, Cunha R, Guimarães S, et al. Diffuse smoking-related lung diseases: insights from a radiologic-pathologic correlation. Insights Into Imaging. 2019;10(1):73.

    PubMed  PubMed Central  Google Scholar 

  40. Meka S, Rao DA. Role of HRCT in smoking related interstitial lung diseases. IAIM. 2019;6(8):78–94.

    Google Scholar 

  41. Elicker BM, Kallianos KG, Jones KD, Henry TS. Smoking-related lung disease. InSeminars in Ultrasound, CT and MRI 2019 Jun 1 (Vol. 40, no. 3, pp. 229-238). WB Saunders.

  42. Attili AK, Kazerooni EA, Gross BH, Flaherty KR, Myers JL, Martinez FJ. Smoking-related interstitial lung disease: radiologic-clinical-pathologic correlation. Radiographics. 2008;28(5):1383–96.

    PubMed  Google Scholar 

  43. Medenica M, Medenica M. Desquamative interstitial pneumonia with clinical, radiological and histologic correlation. Radiol Case Rep. 2019;14(4):505–9.

    PubMed  PubMed Central  Google Scholar 

  44. Bang TJ, Richards JC, Olson AL, Groshong SD, Gelfand EW, Lynch DA. Pulmonary manifestations of common variable immunodeficiency. J Thorac Imaging. 2018;33(6):377–83.

    PubMed  Google Scholar 

  45. Gupta S, Pattanaik D, Krishnaswamy G. Common variable immune deficiency and associated complications. Chest. 2019;156(3):579–93.

    PubMed  Google Scholar 

  46. Pérez ER. Granulomatous lymphocytic interstitial lung disease. Immunol Allergy Clin. 2012;32(4):621–32.

    Google Scholar 

  47. Lui V, Baxter R, Routes JM, Verbsky J, Hsieh EW. Understanding genetic and immune cellular-signaling defects in common variable immunodeficiency with granulomatous lymphocytic interstitial lung disease. J Immunol. 2020;204(1 Supplement):146.18.

    Google Scholar 

  48. Torigian DA, LaRosa DF, Levinson AI, Litzky LA, Miller WT Jr. Granulomatous-lymphocytic interstitial lung disease associated with common variable immunodeficiency: CT findings. J Thorac Imaging. 2008;23(3):162–9.

    PubMed  Google Scholar 

  49. Kuo CW, Chang KC, Chang HY, Huang TH. Lymphocytic interstitial pneumonia in a patient with mixed connective tissue disease–a case report. Respir Med Case Rep. 2018;25:12–7.

    PubMed  PubMed Central  Google Scholar 

  50. Aquilina G, Caltabiano DC, Galioto F, Cancemi G, Pino F, Vancheri A, et al. Cystic interstitial lung diseases: a pictorial review and a practical guide for the radiologist. Diagnostics. 2020;10(6):346.

    PubMed Central  Google Scholar 

  51. Lee KC, Kang EY, Yong HS, Kim C, Lee KY, Hwang SH, et al. A stepwise diagnostic approach to cystic lung diseases for radiologists. Korean J Radiol. 2019;20(9):1368–80.

    PubMed  PubMed Central  Google Scholar 

  52. Chawla A, Lim TC, Krishnan V, Tsen CG. Imaging of interstitial lung diseases. In thoracic imaging 2019 (pp. 361-423). Springer, Singapore.

  53. Cheung OY, Graziano P, Smith ML. Acute lung injury. In practical pulmonary pathology: a diagnostic approach 2018 Jan 1 (pp. 125-146). Elsevier. .

  54. Reed JC. Diffuse air space opacities. Chest Radiology. 2019;197.

  55. Mastan A, Murugesu N, Hasnain A, O’Shaughnessy T, Macavei V. Hamman-Rich syndrome. Respir Med Case Rep. 2018;23:13–7.

    PubMed  Google Scholar 

  56. Khiroya R, Macaluso C, Montero MA, Wells AU, Chua F, Kokosi M, et al. Pleuroparenchymal fibroelastosis. Am J Surg Pathol. 2017;41(12):1683–9.

    PubMed  Google Scholar 

  57. Harada T, Yoshida Y, Kitasato Y, Tsuruta N, Wakamatsu K, Hirota T, et al. The thoracic cage becomes flattened in the progression of pleuroparenchymal fibroelastosis. Eur Respir Rev. 2014;23(132):263–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Nyquist.

Ethics declarations

Conflict of Interest

Alan Nyquist, Raza Mushtaq, Faryal Gill, and Kavitha Yaddanapudi declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pulmonary Radiology

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyquist, A., Mushtaq, R., Gill, F. et al. High-Resolution Computed Tomography Evaluation of Interstitial Lung Disease for the Pulmonologist. Curr Pulmonol Rep 9, 119–130 (2020). https://doi.org/10.1007/s13665-020-00258-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-020-00258-8

Keywords

Navigation