Skip to main content

Advertisement

Log in

Pulmonary MRI: Applications and Use Cases

  • Invited Commentary
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Magnetic resonance imaging (MRI) has robust soft tissue characterization capability which was previously limited to evaluation of the mediastinum, cardiac, and chest wall imaging. MRI has now progressed from an experimental tool to complementary and alternate radiation free imaging modality for optimal identification and comprehensive evaluation of the lung parenchyma including structural, functional, and real-time imaging covering lung nodules/masses, infections, interstitial lung disease, airway diseases, and vascular and pleural abnormalities.

Recent Findings

Recent use of fast imaging techniques and respiratory gating has overcome several of the previously reported MRI technical difficulties such as respiratory, cardiac and diaphragmatic motion, as well as susceptibility related to air tissue interface in the lungs.

Summary

MRI is a viable tool to the imaging armamentarium for the identification and characterization of pulmonary parenchymal abnormalities, providing complementary diagnostic information to computed tomography (CT), improving the non-invasive diagnostic accuracy and problem-solving for indeterminate lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. de Groot PM, Chung JH, Ackman JB, Berry MF, Carter BW, Colletti PM, et al. ACR Appropriateness Criteria® noninvasive clinical staging of primary lung cancer. J Am Coll Radiol. 2019;16(5):S184–95.

    PubMed  Google Scholar 

  2. McComb BL, Ravenel JG, Steiner RM, Chung JH, Ackman JB, Carter B, et al. ACR Appropriateness Criteria® chronic dyspnea-noncardiovascular origin. J Am Coll Radiol. 2018;15(11):S291–301.

    PubMed  Google Scholar 

  3. Harun HH, Karim MK, Abbas Z, Sabarudin A, Muniandy SC, Ng KH. Radiation doses and cancer risk from CT pulmonary angiography examinations.

  4. Lahham A, ALMasri H, Kameel S. Estimation of female radiation doses and breast cancer risk from chest CT examinations. Radiat Prot Dosim. 2018;179(4):303–9.

    Google Scholar 

  5. Schwartz F, Stieltjes B, Szucs-Farkas Z, Euler A. Over-scanning in chest CT: comparison of practice among six hospitals and its impact on radiation dose. Eur J Radiol. 2018;102:49–54.

    PubMed  Google Scholar 

  6. Dournes G, Macey J, Blanchard E, Berger P, Laurent F. MRI of the pulmonary parenchyma: towards clinical applicability? Rev Pneumol Clin. 2017;73(1):40–9.

    CAS  PubMed  Google Scholar 

  7. Parwani P, Ramesh T, Akhter N, Iliescu C, Palaskas N, Kim P, et al. Differentiation of cardiac masses by cardiac magnetic resonance imaging. Curr Cardiovasc Imaging Rep. 2020;13(1):1.

    Google Scholar 

  8. Kapur S, Bhalla AS, Jana M. Pediatric chest MRI: a review. Indian J Pediatr. 2019;5:1–2.

    Google Scholar 

  9. Hirsch FW, Sorge I, Vogel-Claussen J, Roth C, Gräfe D, Päts A, et al. The current status and further prospects for lung magnetic resonance imaging in pediatric radiology. Pediatr Radiol. 2020;29:1–6.

    Google Scholar 

  10. • Raptis CA, Ludwig DR, Hammer MM, Luna A, Broncano J, Henry TS, et al. Building blocks for thoracic MRI: challenges, sequences, and protocol design. J Magn Reson Imaging. 2019;50(3):682–701 The paper discusses the thoracic MRI protocol challenges and how to overcome them in clinical practice.

    PubMed  Google Scholar 

  11. Chang KJ, Kamel IR, Macura KJ, Bluemke DA. 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics. 2008;28(7):1983–98.

    PubMed  Google Scholar 

  12. •• Biederer J, Beer M, Hirsch W, et al. MRI of the lung (2/3). Why... when ... how? Insights Imaging. 2012, 3(4):355–71. https://doi.org/10.1007/s13244-011-0146-8One of the first papers detailing lung MRI protocol for clinical use based on expert consensus.

  13. Biederer J. General requirements of MRI of the lung and suggested standard protocol. In: Kauczor HU, Wielpütz MO, editors. MRI of the lung. Berlin Heidelberg: Springer; 2018.

    Google Scholar 

  14. Broncano J, Luna A, Caro P, Sanchez J, Vazquez J. Cardiac DWI:from basics to clinical applications. Eur Congress Radiol. 2018: C-2633. https://doi.org/10.1594/ecr2018/C-2633.

  15. Winzer R, Hoberück S, Zöphel K, Kotzerke J, Brauer T, Hoffmann RT, et al. Diffusion-weighted MRI for initial staging in Hodgkins lymphoma: comparison with FDG PET. Eur J Radiol. 2020;123:108775.

    PubMed  Google Scholar 

  16. Luna A, Sánchez-Gonzalez J, Caro P. Diffusion-weighted imaging of the chest. Magn Reson Imaging Clin N Am. 2011;19(1):69–94. https://doi.org/10.1016/j.mric.2010.09.006.

    Article  PubMed  Google Scholar 

  17. • Chen L, Zhang J, Bao J, et al. Meta-analysis of diffusion-weighted MRI in the differential diagnosis of lung lesions. J Magn Reson Imaging. 2013;37(6):1351–8. https://doi.org/10.1002/jmri.23939A meta-anlysis study evaluating role of DWI in differentiating benign from malignant lesions on chest MRI. This continues to be a highly investigated topic in MRI field to minimize need of invasive tissue sampling.

    Article  PubMed  Google Scholar 

  18. Yumrutepe S, Turtay MG, Oguzturk H, Aytemur Z, Guven T, Turgut K, et al. Diffusion-weighted magnetic resonance imaging of thorax in diagnosis of pulmonary embolism. Med Sci. 2018;7:759–61.

    Google Scholar 

  19. Christodoulou AG, Shaw JL, Nguyen C, Yang Q, Xie Y, Wang N, et al. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nature Biomed Eng. 2018;2(4):215–26.

    CAS  Google Scholar 

  20. Zeng G, Teng Y, Zhu J, Zhu D, Yang B, Hu L, et al. Clinical application of MRI-respiratory gating technology in the evaluation of children with obstructive sleep apnea hypopnea syndrome. Medicine. 2018;97(4).

  21. Ebner L, Kammerman J, Driehuys B, Schiebler ML, Cadman RV, Fain SB. The role of hyperpolarized 129xenon in MR imaging of pulmonary function. Eur J Radiol. 2017;86(2017):343–52. https://doi.org/10.1016/j.ejrad.2016.09.015.

    Article  PubMed  Google Scholar 

  22. Muradyan I, Patz S. Hyperpolarized 129Xenon MRI of the lung. In: Kauczor HU, Wielpütz MO, editors. MRI of the lung. Berlin Heidelberg: Springer; 2018.

    Google Scholar 

  23. Nasim F, Ost DE. Management of the solitary pulmonary nodule. Curr Opin Pulm Med. 2019;25(4):344–53.

    PubMed  Google Scholar 

  24. Robertson J, Nicholls S, Bardin P, Ptasznik R, Steinfort D, Miller A. Incidental pulmonary nodules are common on CT coronary angiogram and have a significant cost impact. Heart Lung Circulation. 2019;28(2):295–301.

    Google Scholar 

  25. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung AN, Mayo JR, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology. 2017;284(1):228–43.

    PubMed  Google Scholar 

  26. Donnelly EF, Kazerooni EA, Lee E, Henry TS, Boiselle PM, Crabtree TD, et al. ACR Appropriateness Criteria® lung cancer screening. J Am Coll Radiol. 2018;15(11):S341–6.

    PubMed  Google Scholar 

  27. • Cieszanowski A, Lisowska A, Dabrowska M, et al. MR imaging of pulmonary nodules: detection rate and accuracy of size estimation in comparison to computed tomography. PLoS One. 2016;11(6):1–11. https://doi.org/10.1371/journal.pone.0156272An important study evaluating diagnostic accuracy of MRI in detection of pulmonary nodules of various sizes. Currently, pulmonary nodules greater than 4 mm on CT require follow-up. This study showed that these nodules can be readily identified on MRI.

    Article  CAS  Google Scholar 

  28. Sommer G, Tremper J, Koenigkam-Santos M, Delorme S, Becker N, Biederer J, et al. Lung nodule detection in a high-risk population: comparison of magnetic resonance imaging and low-dose computed tomography. Eur J Radiol. 2014;83(3):600–5. https://doi.org/10.1016/j.ejrad.2013.11.012.

    Article  PubMed  Google Scholar 

  29. Meier-Schroers M, Homsi R, Schild HH, Thomas D. Lung cancer screening with MRI: characterization of nodules with different non-enhanced MRI sequences. Acta Radiol. 2019;60(2):168–76. https://doi.org/10.1177/0284185118778870.

    Article  PubMed  Google Scholar 

  30. Wang X, Wan Q, Chen H, Li Y, Li X. Classification of pulmonary lesion based onmultiparametricMRI: utility of radiomics and comparison of machine learning methods. Eur Radiol. 2020;30:4595–4605. https://doi.org/10.1007/s00330-020-06768-y.

  31. Ohno Y, Kauczor HU, Hatabu H, Seo JB, van Beek EJ, International Workshop for Pulmonary Functional Imaging (IWPFI). MRI for solitary pulmonary nodule and mass assessment: current state of the art. J Magn Reson Imaging. 2018;47(6):1437–58.

    PubMed  Google Scholar 

  32. Ohno Y, Koyama H, Dinkel J. Lung cancer. In: Kauczor HU, Wielpütz MO, editors. MRI of the lung. Berlin Heidelberg: Springer; 2018.

    Google Scholar 

  33. Bruzzi JF, Komaki R, Walsh GL, Truong MT, Gladish GW, Munden RF, et al. Imaging of non-small cell lung cancer of the superior sulcus. RadioGraphics. 2008;28(2):561–72. https://doi.org/10.1148/rg.282075710.

    Article  PubMed  Google Scholar 

  34. Kratz JR, Woodard G, Jablons DM. Management of lung cancer invading the superior sulcus. Thorac Surg Clin. 2017;27(2):149–57.

    PubMed  Google Scholar 

  35. Heelan RT, Demas BE, Caravelli JF, Martini N, Bains MS, McCormack PM, et al. Superior sulcus tumors: CT and MR imaging. Radiology. 1989;170(3):637–41.

    CAS  PubMed  Google Scholar 

  36. Kurihara Y, Matsuoka S, Yamashiro T, Fujikawa A, Matsushita S, Yagihashi K, et al. MRI of pulmonary nodules. Am J Roentgenol. 2014;202(3):210–6. https://doi.org/10.2214/AJR.13.11618.

    Article  Google Scholar 

  37. Kiryu T, Ohashi N, Matsui E, Hoshi H, Iwata H, Shimokawa K. Rounded atelectasis: delineation of enfolded visceral pleura by MRI. J Comput Assist Tomogr. 2002;26(1):37–8. https://doi.org/10.1097/00004728-200201000-00007.

    Article  PubMed  Google Scholar 

  38. Stathopoulos GT, Karamessini MT, Sotiriadi AE, Pastromas VG. Rounded atelectasis of the lung. Respir Med. 2005;99(5):615–23. https://doi.org/10.1016/j.rmed.2004.10.003.

    Article  PubMed  Google Scholar 

  39. Yang RM, Li L, Wei XH, Guo YM, Huang YH, Lai LS, et al. Differentiation of central lung cancer from atelectasis: comparison of diffusion-weighted MRI with PET/CT. PloS One. 2013 Apr 4;8(4):e60279. https://doi.org/10.1371/journal.pone.0060279.

  40. Zhang X, Fu Z, Gong G, Wei H, Duan J, Chen Z, et al. Implementation of diffusion-weighted magnetic resonance imaging in target delineation of central lung cancer accompanied with atelectasis in precision radiotherapy. Oncol Lett. 2017;14(3):2677–82.

    PubMed  PubMed Central  Google Scholar 

  41. Jokerst C, Chung JH, Ackman JB, Carter B, Colletti PM, Crabtree TD, et al. ACR appropriateness criteria® acute respiratory illness in immunocompetent patients. J Am Coll Radiol. 2018;15(11):S240–51.

    PubMed  Google Scholar 

  42. Lee C, Colletti PM, Chung JH, Ackman JB, Berry MF, Carter BW, et al. ACR Appropriateness Criteria® acute respiratory illness in Immunocompromised patients. J Am Coll Radiol. 2019;16(11):S331–9.

    PubMed  Google Scholar 

  43. Liszewski MC, Görkem S, Sodhi KS, Lee EY. Lung magnetic resonance imaging for pneumonia in children. Pediatr Radiol. 2017;47(11):1420–30.

    PubMed  Google Scholar 

  44. Marangu D, Gray D, Vanker A, Zampoli M. Exogenous lipoid pneumonia in children: a systematic review. Paediatr Respir Rev. 2019;33:45–51. https://doi.org/10.1016/j.prrv.2019.01.001.

  45. Sehgal IS, Choudhary H, Dhooria S, Aggarwal AN, Bansal S, Garg M, et al. Prevalence of sensitization to Aspergillus flavus in patients with allergic bronchopulmonary aspergillosis. Med Mycol. 2019;57(3):270–6.

    PubMed  Google Scholar 

  46. Gao Y, Soubani A. Advances in the diagnosis and management of pulmonary aspergillosis. Adv Respiratory Med. 2019;87(6):231–43.

    Google Scholar 

  47. Sodhi KS, Gupta P, Shrivastav A, Saxena AK, Mathew JL, Singh M, et al. Evaluation of 3 T lung magnetic resonance imaging in children with allergic bronchopulmonary aspergillosis: pilot study. Eur J Radiol. 2019;111:88–92.

    PubMed  Google Scholar 

  48. Zeng J, Liu Z, Shen G, Zhang Y, Li L, Wu Z, et al. MRI evaluation of pulmonary lesions and lung tissue changes induced by tuberculosis. Int J Infect Dis. 2019;82:138–46. https://doi.org/10.1016/j.ijid.2019.03.004.

    Article  PubMed  Google Scholar 

  49. Romei C, Turturici L, Tavanti L, Miedema J, Fiorini S, Marletta M, et al. The use of chest magnetic resonance imaging in interstitial lung disease: a systematic review. Eur Respir Rev. 2018;27(150):180062.

    PubMed  Google Scholar 

  50. Lonzetti L, Zanon M, Pacini GS, Altmayer S, Martins de Oliveira D, Rubin AS, et al. Magnetic resonance imaging of interstitial lung diseases: a state-of-the-art review. Respir Med. 2019;155(April 2019):79–85. https://doi.org/10.1016/j.rmed.2019.07.006.

    Article  PubMed  Google Scholar 

  51. Weatherley ND, Eaden JA, Stewart NJ, Bartholmai BJ, Swift AJ, Bianchi SM, et al. Experimental and quantitative imaging techniques in interstitial lung disease. Thorax. 2019;74(6):611–9.

    PubMed  PubMed Central  Google Scholar 

  52. Arkema EV, Cozier YC. Epidemiology of sarcoidosis: current findings and future directions. Therapeutic Adv Chronic Dis. 2018;9(11):227–40.

    Google Scholar 

  53. Bhalla AS, Das A, Naranje P, Goyal A, Guleria R, Khilnani GC. Dilemma of diagnosing thoracic sarcoidosis in tuberculosis-endemic regions: an imaging-based approach. Part 2. Indian J Radiol Imaging. 2017;27(4):380.

    PubMed  PubMed Central  Google Scholar 

  54. Chung JH, Cox CW, Forssen AV, Biederer J, Puderbach M, Lynch DA. The dark lymph node sign on magnetic resonance imaging: a novel finding in patients with sarcoidosis. J Thorac Imaging. 2014;29(2):125–9.

    PubMed  Google Scholar 

  55. Gill RR, Gerbaudo VH, Jacobson FL, Trotman-Dickenson B, Matsuoka S, Hunsaker A, et al. MR imaging of benign and malignant pleural disease. Magn Reson Imaging Clin N Am. 2008;16(2):319–39. https://doi.org/10.1016/j.mric.2008.03.004.

    Article  PubMed  Google Scholar 

  56. Yaddanapudi K. Benign loculated pleural effusion. InPET/MR imaging. Cham: Springer; 2018. p. 77–8.

    Google Scholar 

  57. de Fonseka D, Walker S, Maskell N, Edey A. S58 role of MRI in characterising equivocal pleural thickening on CT.

  58. Kaul V, McCracken DJ, Rahman NM, Epelbaum O. Contemporary approach to the diagnosis of malignant pleural effusion. Ann Am Thoracic Soc. 2019;16(9):1099–106.

    Google Scholar 

  59. Hierholzer J, Luo L, Bittner RC, Stroszczynski C, Schoenfeld N, Dorow P, et al. MRI and CT in the differential diagnosis of pleural disease. Chest. 2000;118(3):604–9.

    CAS  PubMed  Google Scholar 

  60. Tsim S, Humphreys CA, Cowell GW, Stobo DB, Noble C, Woodward R, et al. Early contrast enhancement: a novel magnetic resonance imaging biomarker of pleural malignancy. Lung Cancer. 2018;118:48–56.

    PubMed  PubMed Central  Google Scholar 

  61. Usuda K, Iwai S, Funasaki A, Sekimura A, Motono N, Matoba M, et al. Diffusion-weighted imaging can differentiate between malignant and benign pleural diseases. Cancers. 2019;11(6):811.

    PubMed Central  Google Scholar 

  62. Keskin Z, Yeşildağ M, Alkan E, Kayhan A, Tolu Ľ, Keskin S. Differentiation between transudative and exudative pleural effusions by diffusion weighted magnetic resonance imaging. Iran J Radiol. 2019;16(2):e78775. https://doi.org/10.5812/iranjradiol.78775.

  63. Rezai S, Graves AG, Henderson CE. Thoracic endometriosis, a review. Obstet Gynecol Int J. 2019;10(5):342–6.

    Google Scholar 

  64. Montoriol PF, Da Ines D, Bourdel N, Garcier JM, Canis M. Re: thoracic endometriosis syndrome: CT and MRI features. Clin Radiol. 2014;69(5):549–50. https://doi.org/10.1016/j.crad.2014.01.023.

    Article  CAS  PubMed  Google Scholar 

  65. Rangunwala J, Sitta J, Vyas K, Roda M. Multimodality thoracoabdominal imaging findings in a rare case of thoracic endometriosis syndrome. Cureus. 2020;12(1):e6819. https://doi.org/10.7759/cureus.6819.

  66. Maniglio P, Ricciardi E, Meli F, Vitale SG, Noventa M, Vitagliano A, et al. Catamenial pneumothorax caused by thoracic endometriosis. Radiol Case Rep. 2018;13(1):81–5.

    PubMed  Google Scholar 

  67. Sanada T, Park J, Hagiwara M, Ikeda N, Nagai T, Matsubayashi J, et al. CT and MRI findings of bronchopulmonary endometriosis: a case presentation. Acta Radiol Open. 2018;7(10):2058460118801164.

    PubMed  PubMed Central  Google Scholar 

  68. Sinha S, Swift AJ, Kamil MA, et al. The role of imaging in malignant pleural mesothelioma: an update after the 2018 BTS guidelines. Clin Radiol. 2020. https://doi.org/10.1016/j.crad.2019.12.001.

  69. Heussel CP, Wielputz MO, Kauczor HU. Disease of the pleura and the chest wall. In: Kauczor HU, Wielpütz MO, editors. MRI of the lung. Berlin Heidelberg: Springer; 2018.

    Google Scholar 

  70. Hosch W, Schlieter M, Ley S, Heye T, Kauczor HU, Libicher M. Detection of acute pulmonary embolism: feasibility of diagnostic accuracy of MRI using a stepwise protocol. Emerg Radiol. 2014;21(2):151–8. https://doi.org/10.1007/s10140-013-1176-y.

    Article  PubMed  Google Scholar 

  71. Marshall PS, Kerr KM, Auger WR. Chronic thromboembolic pulmonary hypertension. Clin Chest Med. 2013;34(4):779–97.

    PubMed  Google Scholar 

  72. Aluja Jaramillo F, Gutierrez FR, Díaz Telli FG, Yevenes Aravena S, Javidan-Nejad C, Bhalla S. Approach to pulmonary hypertension: from CT to clinical diagnosis. Radiographics. 2018;38(2):357–73. https://doi.org/10.1148/rg.2018170046.

    Article  PubMed  Google Scholar 

  73. Nishiyama KH, Saboo SS, Tanabe Y, Jasinowodolinski D, Landay MJ, Kay FU. Chronic pulmonary embolism: diagnosis. Cardiovasc Diagnosis Therapy. 2018;8(3):253–71.

    Google Scholar 

  74. Yaddanapudi K. Pulmonary infarct. InPET/MR imaging. Cham: Springer; 2018. p. 71–2.

    Google Scholar 

  75. Scholz O, Denecke T, Böttcher J, Schwarz C, Mentzel HJ, Streitparth F, et al. MRI of cystic fibrosis lung manifestations: sequence evaluation and clinical outcome analysis. Clin Radiol. 2017;72(9):754–63. https://doi.org/10.1016/j.crad.2017.03.017.

    Article  CAS  PubMed  Google Scholar 

  76. Nagle SK, Puderbach M, Eichinger M, Altes TA. Magnetic resonance imaging of the lung: cystic fibrosis. In: Kauczor HU, Wielpütz MO, editors. MRI of the lung. Berlin Heidelberg: Springer; 2018.

    Google Scholar 

  77. Syrjala H, Broas M, Ohtonen P, Jartti A, Pääkkö E. Chest magnetic resonance imaging for pneumonia diagnosis in outpatients with lower respiratory tract infection. Eur Respir J. 2017;49(1):1601303.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raza Mushtaq.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pulmonary Radiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mushtaq, R., Jayagurunathan, U., Arif-Tiwari, H. et al. Pulmonary MRI: Applications and Use Cases. Curr Pulmonol Rep 9, 131–142 (2020). https://doi.org/10.1007/s13665-020-00257-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-020-00257-9

Keywords

Navigation