Skip to main content

Advertisement

Log in

Eosinophilic vs. Neutrophilic Asthma

  • COPD and Asthma (A Zeki, Section Editor)
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Understanding the molecular mechanisms and heterogeneity of asthma has allowed the discovery of two distinct endotypes based on the mechanisms driving the underlying airway inflammation: eosinophilic asthma, a subtype of T2-high asthma, and neutrophilic asthma, a subtype of non-T2 asthma or T2-low asthma. In this review, we highlight the current knowledge about the immunopathology of these distinct subtypes and their clinical and therapeutic implications.

Recent Findings

The intricate interplay of immune pathways has been recently evaluated in both eosinophilic and neutrophilic asthma. The delineation of signaling molecules and cytokines in the eosinophilic pathway has led to the identification of biomarkers that can guide in diagnosing and prognosticating patients and the advent of several targeted biologic therapies. However, the mechanisms of neutrophilic asthma are still not well understood and constitute an unmet need and a therapeutic challenge especially that patients with this type of asthma are often characterized by severe and refractory disease.

Summary

The understanding of the heterogeneity of asthma profiles and the fundamental inflammatory pathways driving airway inflammation helped in stratifying the disease into distinct endotypes and phenotypes. Recognizing the diverseness of the disease helped in understanding the varying response to treatment options and accounting for the shift in treatment paradigms from a “one size fits all” approach to targeted personalized medicine mostly in eosinophilic asthma. Knowledge gaps exist in the understanding of the pathophysiology of neutrophilic asthma with further studies needed to elucidate its pathogenesis and to develop more effective therapy to target this subgroup of patients with more resistant disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Agusti A, Bel E, Thomas M, et al. Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J. 2016. https://doi.org/10.1183/13993003.01359-2015An important paper describing the importance of the concept of personalized medicine and the emergence of endotypes and phenotypes in asthma.

    PubMed  Google Scholar 

  2. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999. https://doi.org/10.1164/ajrccm.160.3.9812110.

    CAS  PubMed  Google Scholar 

  3. Assaf SM, Hanania NA. Biological treatments for severe asthma. Curr Opin Allergy Clin Immunol. 2019. https://doi.org/10.1097/ACI.0000000000000549.

    CAS  PubMed  Google Scholar 

  4. Camelo A, Rosignoli G, Ohne Y, Stewart RA, Overed-Sayer C, Sleeman MA, et al. IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv. 2017. https://doi.org/10.1182/bloodadvances.2016002352.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Borish L. The immunology of asthma: asthma phenotypes and their implications for personalized treatment. Ann Allergy Asthma Immunol. 2016. https://doi.org/10.1016/j.anai.2016.04.022.

    CAS  Google Scholar 

  6. Paul WE. What determines Th2 differentiation, in vitro and in vivo? Immunol Cell Biol. 2010. https://doi.org/10.1038/icb.2010.2.

    CAS  PubMed  Google Scholar 

  7. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010. https://doi.org/10.1016/j.jaci.2009.11.017.

    PubMed  Google Scholar 

  8. Persson C. Lysis of primed eosinophils in severe asthma. J Allergy Clin Immunol. 2013. https://doi.org/10.1016/j.jaci.2013.09.036.

    PubMed  Google Scholar 

  9. Balzar S, Fajt ML, Comhair SAA, et al. Mast cell phenotype, location, and activation in severe asthma. Am J Respir Crit Care Med. 2011. https://doi.org/10.1164/rccm.201002-0295oc.

    PubMed  Google Scholar 

  10. Fajt ML, Gelhaus SL, Freeman B, Uvalle CE, Trudeau JB, Holguin F, et al. Prostaglandin D2 pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 2013. https://doi.org/10.1016/j.jaci.2013.01.035.

    Google Scholar 

  11. Miranda C, Busacker A, Balzar S, Trudeau J, Wenzel SE. Distinguishing severe asthma phenotypes: role of age at onset and eosinophilic inflammation. J Allergy Clin Immunol. 2004. https://doi.org/10.1016/j.jaci.2003.10.041.

    PubMed  Google Scholar 

  12. Peters MC, Kerr S, Dunican EM, et al. Refractory airway type 2 inflammation in a large subgroup of asthmatic patients treated with inhaled corticosteroids. J Allergy Clin Immunol. 2019. https://doi.org/10.1016/j.jaci.2017.12.1009.

    PubMed  Google Scholar 

  13. Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016. https://doi.org/10.1016/j.jaci.2015.12.1324.

    PubMed  Google Scholar 

  14. Liu T, Kanaoka Y, Barrett NA, et al. Aspirin-exacerbated respiratory disease involves a cysteinyl leukotriene–driven IL-33–mediated mast cell activation pathway. J Immunol. 2015. https://doi.org/10.4049/jimmunol.1500905.

    CAS  PubMed  Google Scholar 

  15. Buchheit KM, Cahill KN, Katz HR, et al. Thymic stromal lymphopoietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016. https://doi.org/10.1016/j.jaci.2015.10.020.

    PubMed  Google Scholar 

  16. Walsh CJ, Zaihra T, Benedetti A, Fugère C, Olivenstein R, Lemière C, et al. Exacerbation risk in severe asthma is stratified by inflammatory phenotype using longitudinal measures of sputum eosinophils. Clin Exp Allergy. 2016. https://doi.org/10.1111/cea.12762.

    CAS  Google Scholar 

  17. •• Westerhof GA, Korevaar DA, Amelink M, De Nijs SB, De Groot JC, Wang J, et al. Biomarkers to identify sputum eosinophilia in different adult asthma phenotypes. Eur Respir J. 2015. https://doi.org/10.1183/09031936.00012415An important paper investigating the accuracy of surrogate biomarkers of sputum eosinophilia.

    CAS  PubMed  Google Scholar 

  18. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012. https://doi.org/10.1016/S0140-6736(12)60988-X.

    CAS  Google Scholar 

  19. Wenzel S, Ford L, Pearlman D, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013. https://doi.org/10.1056/NEJMoa1304048.

    CAS  PubMed  Google Scholar 

  20. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011. https://doi.org/10.1164/rccm.9120-11ST.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanania NA, Massanari M, Jain N. Measurement of fractional exhaled nitric oxide in real-world clinical practice alters asthma treatment decisions. Ann Allergy Asthma Immunol. 2018. https://doi.org/10.1016/j.anai.2018.01.031.

    Google Scholar 

  22. Schleich F, Demarche S, Louis R. Biomarkers in the management of difficult asthma. Curr Top Med Chem. 2016. https://doi.org/10.2174/1568026616666151015093406.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Normansell R, Walker S, Milan SJ, Walters EH, Nair P. Omalizumab for asthma in adults and children. Cochrane Database Syst Rev. 2014. https://doi.org/10.1002/14651858.CD003559.pub4.

  24. Divekar R, Hagan J, Rank M, Park M, Volcheck G, O’Brien E, et al. Diagnostic utility of urinary LTE4 in asthma, allergic rhinitis, chronic rhinosinusitis, nasal polyps, and aspirin sensitivity. J Allergy Clin Immunol Pract. 2016. https://doi.org/10.1016/j.jaip.2016.03.004.

    PubMed  Google Scholar 

  25. Izuhara K, Conway SJ, Moore BB, Matsumoto H, Holweg CTJ, Matthews JG, et al. Roles of periostin in respiratory disorders. Am J Respir Crit Care Med. 2016. https://doi.org/10.1164/rccm.201510-2032PP.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jia X, Li S, Xu TT, Ji N, Huang M. Diagnostic accuracy of periostin in predicting asthma: a systematic review and meta-analysis. J Asthma. 2019. https://doi.org/10.1080/02770903.2019.1684518.

  27. Kuo CHS, Pavlidis S, Loza M, et al. A transcriptome-driven analysis of epithelial brushings and bronchial biopsies to define asthma phenotypes in U-BIOPRED. Am J Respir Crit Care Med. 2017. https://doi.org/10.1164/rccm.201512-2452OC.

    CAS  PubMed  Google Scholar 

  28. •• Chang HS, Lee TH, Jun JA, Baek AR, Park JS, Koo SM, et al. Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations. Expert Rev Respir Med. 2017. https://doi.org/10.1080/17476348.2017.1268919A review discussing the pathomechanisms and clinical implications of neutrophilic asthma.

    PubMed  Google Scholar 

  29. Al-Ramli W, Préfontaine D, Chouiali F, Martin JG, Olivenstein R, Lemière C, et al. T H 17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol. 2009. https://doi.org/10.1016/j.jaci.2009.02.024.

    CAS  PubMed  Google Scholar 

  30. Wood LG, Baines KJ, Fu J, Scott HA, Gibson PG. The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest. 2012. https://doi.org/10.1378/chest.11-1838.

    CAS  PubMed  Google Scholar 

  31. Raundhal M, Morse C, Khare A, et al. High IFN-γ and low SLPI mark severe asthma in mice and humans. J Clin Invest. 2015. https://doi.org/10.1172/JCI80911.

    PubMed  Google Scholar 

  32. Maniscalco M, Paris D, Melck DJ, D’Amato M, Zedda A, Sofia M, et al. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J Allergy Clin Immunol. 2017. https://doi.org/10.1016/j.jaci.2016.08.038.

    PubMed  Google Scholar 

  33. Sutherland ER, Goleva E, King TS, Lehman E, Stevens AD, Jackson LP, et al. Cluster analysis of obesity and asthma phenotypes. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0036631.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Peters U, Dixon AE, Forno E. Obesity and asthma. J Allergy Clin Immunol. 2018. https://doi.org/10.1016/j.jaci.2018.02.004.

    PubMed  Google Scholar 

  35. Peters MC, McGrath KW, Hawkins GA, et al. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir Med. 2016. https://doi.org/10.1016/S2213-2600(16)30048-0.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Takahashi K, Pavlidis S, Ng Kee Kwong F, et al. Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. Eur Respir J. 2018. https://doi.org/10.1183/13993003.02173-2017.

    PubMed  Google Scholar 

  37. Hanania NA, King MJ, Braman SS, et al. Asthma in the elderly: current understanding and future research needs - a report of a National Institute on Aging (NIA) workshop. J Allergy Clin Immunol. 2011. https://doi.org/10.1016/j.jaci.2011.06.048.

    PubMed  Google Scholar 

  38. Dunn RM, Busse PJ, Wechsler ME. Asthma in the elderly and late-onset adult asthma. Allergy Eur J Allergy Clin Immunol. 2018. https://doi.org/10.1111/all.13258.

    PubMed  Google Scholar 

  39. Mathur SK. Allergy and asthma in the elderly. Semin Respir Crit Care Med. 2010. https://doi.org/10.1055/s-0030-1265899.

    PubMed  PubMed Central  Google Scholar 

  40. Baptist AP, Busse PJ. Asthma over the age of 65: all’s well that ends well. J Allergy Clin Immunol Pract. 2018. https://doi.org/10.1016/j.jaip.2018.02.007.

    PubMed  Google Scholar 

  41. Maes T, Cobos FA, Schleich F, et al. Asthma inflammatory phenotypes show differential microRNA expression in sputum. J Allergy Clin Immunol. 2016. https://doi.org/10.1016/j.jaci.2016.02.018.

    CAS  PubMed  Google Scholar 

  42. Nair P, Aziz-Ur-rehman A, Radford K (2015) Therapeutic implications of “neutrophilic asthma.” Curr Opin Pulm Med https://doi.org/10.1097/MCP.0000000000000120.

    CAS  PubMed  Google Scholar 

  43. Cavaleiro Rufo J, Madureira J, Oliveira Fernandes E, Moreira A. Volatile organic compounds in asthma diagnosis: a systematic review and meta-analysis. Allergy Eur J Allergy Clin Immunol. 2016. https://doi.org/10.1111/all.12793.

    PubMed  Google Scholar 

  44. Schleich FN, Zanella D, Stefanuto PH, et al. Exhaled volatile organic compounds are able to discriminate between neutrophilic and eosinophilic asthma. Am J Respir Crit Care Med. 2019. https://doi.org/10.1164/rccm.201811-2210OC.

    CAS  PubMed  Google Scholar 

  45. Murillo JC, Dimov V, Gonzalez-Estrada A. An evaluation of fevipiprant for the treatment of asthma: a promising new therapy? Expert Opin Pharmacother. 2018. https://doi.org/10.1080/14656566.2018.1540589.

    CAS  PubMed  Google Scholar 

  46. Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet. 2017. https://doi.org/10.1016/S0140-6736(17)31281-3.

    CAS  Google Scholar 

  47. Brusselle GG, VanderStichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013. https://doi.org/10.1136/thoraxjnl-2012-202698.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola A. Hanania.

Ethics declarations

Conflict of Interest

Sara M. Assaf and Nicola A. Hanania declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on COPD and Asthma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assaf, S.M., Hanania, N.A. Eosinophilic vs. Neutrophilic Asthma. Curr Pulmonol Rep 9, 28–35 (2020). https://doi.org/10.1007/s13665-020-00244-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-020-00244-0

Keywords

Navigation