Skip to main content
Log in

Computational Tools for Additive Manufacture of Tailored Microstructure and Properties

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Additive manufacturing has the potential to revolutionize industrial hardware and unlock efficiency gains through the fabrication of geometries and architectures not possible by conventional processing. Currently, most additive builds use a single set of process parameters which results in a part with a homogenous microstructure that provides a singular performance level. To move beyond this state, a set of computational tools has been developed to track material evolution through each step of the additive process. Computational fluid dynamics and phase field models for microstructure evolution as a function of processing parameters and a crystal plasticity model coupling microstructure and mechanical properties for performance predictions are leveraged to establish a connection between additive parameters, the final microstructure, and mechanical performance. This framework was utilized to tailor spatially-varying mechanical properties in a part by controlling the microstructure evolution during the additive process. Specifically, a turbine blade was 3D-printed from nickel superalloy IN718 using laser powder bed fusion with coarse grains in the airfoil section and finer grains printed in the root of the blade. The benefit of being able to intentionally insert coarse grains in the high-temperature region of the blade was showcased with a microstructure-sensitive creep model that indicates longer creep life for coarser grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. H. Frost, M. Ashby, Deformation-mechanism maps: the plasticity and creep of metals and ceramics (Pergamon Press, Oxford, 1982)

    Google Scholar 

  2. B. Wilshire, C.J. Palmer, Grain size effects during creep of copper. Scr. Mater. 46(7), 483–488 (2002)

    Article  CAS  Google Scholar 

  3. K. Nowak, Grain Size dependence of creep lifetime modeled by means of cellular automata. Acta Mech. et Auto. 5(4), 81–85 (2011)

    Google Scholar 

  4. M.L. Santella, P.F. Tortorelli, M. Render, B. Pint, H. Wang, V. Cedro III., X.F. Chen, Effects of applied stress and grain size on creep-rupture lifetime prediction for Haynes 282 alloy. Mater. Sci. Eng. A. 838, 142785 (2022)

    Article  CAS  Google Scholar 

  5. D. Taylor, J.F. Knott, Fatigue crack propagation behaviour of short cracks; the effect of microstructure. Fatigue Fract. Eng. Mater. Struct. 4(2), 147–155 (1981)

    Article  CAS  Google Scholar 

  6. A. Järvenpää, L.P. Karjalainen, M. Jaskari, Effect of grain size on fatigue behavior of Type 301LN stainless steel. Int. J. Fatigue. 65, 93–98 (2014)

    Article  Google Scholar 

  7. X. Zhu, C. Gong, Y.F. Jia, R. Wang, C. Zhang, Y. Fu, X.C. Zhang, Influence of grain size on the small fatigue crack initiation and propagation behaviors of a nickel-based superalloy at 650° C. J. Mater. Sci. Technol. 35(8), 1607–1617 (2019)

    Article  CAS  Google Scholar 

  8. M. Mlikota, K. Dogahe, S. Schmauder, Ž Božić, Influence of the grain size on the fatigue initiation life curve. Int. J. Fatigue. 158, 106562 (2022)

    Article  CAS  Google Scholar 

  9. V.M. Barker, W.S. Johnson, B.S. Adair, S.D. Antolovich, A. Staroselsky, Load and temperature interaction modeling of fatigue crack growth in a Ni-base superalloy. Int. J. Fatigue. 52, 95–105 (2013)

    Article  CAS  Google Scholar 

  10. Y. Chen, W. Kong, C. Yuan, S. Liu, Y. Cai, Y. Wang, X. Gao, The effects of temperature and stress on the high-cycle fatigue properties of a Ni-based wrought superalloy. Int. J. Fatigue. 172, 107669 (2023)

    Article  CAS  Google Scholar 

  11. L. Thébaud, P. Villechaise, C. Crozet, A. Devaux, D. Béchet, J.M. Franchet, J. Cormier, Is there an optimal grain size for creep resistance in Ni-based disk superalloys? Mater. Sci. Eng. A. 716, 274–283 (2018)

    Article  Google Scholar 

  12. B. Navaneeth, S.R. Mungara, R.S. Chidhananda, K.S.T. Reddy, Study of dual grain microstructure heat treatment in steel specimen representing gas turbine rotor disc. Mater. Today. 54, 314–318 (2022)

    Google Scholar 

  13. K. Yagi, K. Kubo, O. Kanemaru, C. Tanaka, Effect of grain size on rupture life under creep-fatigue loading for 321 stainless steel. Mech. Behav. Mat. 4, 583–588 (1991)

    Google Scholar 

  14. K. Kobayashi, K. Yamaguchi, M. Hayakawa, M. Kimura, Grain size effect on high-temperature fatigue properties of alloy718. Mater. Lett. 59(2–3), 383–386 (2005)

    Article  CAS  Google Scholar 

  15. B. Du, J. Yang, C. Cui, X. Sun, Effects of grain size on the high-cycle fatigue behavior of IN792 superalloy. Mater. Des. 65, 57–64 (2015)

    Article  CAS  Google Scholar 

  16. A. Cruzado, S. Lucarini, J. Lorca, J. Segurado, Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline Inconel 718. Int. J. Fatigue. 113, 236–245 (2018)

    Article  CAS  Google Scholar 

  17. A. Staroselsky, B.N. Cassenti, Creep, plasticity, and fatigue of single crystal superalloy. Int. J. Solids Struct. 48(13), 2060–2075 (2011)

    Article  CAS  Google Scholar 

  18. Y. Miyamato, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally graded materials: design, processing and application. Sci. Bus Media. 1(1), 1–339 (1999)

    Google Scholar 

  19. A.J. Goupee, S.S. Vel, Transient multiscale thermoelastic analysis of functionally graded materials. Compos. Struct. 92(6), 1372–1390 (2010)

    Article  Google Scholar 

  20. S.P. Murray, K.M. Pusch, A.T. Polonsky, C.J. Torbet, G.G. Seward, N. Zhou, T.M. Pollock, A defect-resistant Co–Ni superalloy for 3D printing. Nat. Commun. 11(1), 1–11 (2020)

    Article  Google Scholar 

  21. C. Panwisawas, Y.T. Tang, R.C. Reed, Metal 3D printing as a disruptive technology for superalloys. Nat. Commun. 11(1), 1–4 (2020)

    Article  Google Scholar 

  22. R.R. Dehoff, M.M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe, S.S. Babu, Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater. Sci. Technol. 31(8), 931–938 (2015)

    Article  CAS  Google Scholar 

  23. J. Raplee, A. Plotkowski, M.M. Kirka, R. Dinwiddie, A. Okello, R.R. Dehoff, S.S. Babu, Thermographic microstructure monitoring in electron beam additive manufacturing. Sci. Rep. 7(1), 1–16 (2017)

    Article  Google Scholar 

  24. T.T. Roehling, S.S. Wu, S.A. Khairallah, J.D. Roehling, S.S. Soezeri, M.F. Crumb, M.J. Matthews, Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing. Acta Mater. 128, 197–206 (2017)

    Article  CAS  Google Scholar 

  25. R. Shi, S.A. Khairallah, T.T. Roehling, T.W. Heo, J.T. McKeown, M.J. Matthews, Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy. Acta Mater. 184, 284–305 (2020)

    Article  CAS  Google Scholar 

  26. V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, L. Alzina, Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater. Des. 114, 441–449 (2017)

    Article  CAS  Google Scholar 

  27. A. Basak, R. Acharya, S. Das, Additive manufacturing of single-crystal superalloy CMSX-4 through scanning laser epitaxy: computational modeling, experimental process development, and process parameter optimization. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 3845–3859 (2016)

    Article  CAS  Google Scholar 

  28. M. Zavala-Arredondo, N. Boone, J. Willmott, D.T. Childs, P. Ivanov, K.M. Groom, K. Mumtaz, Laser diode area melting for high speed additive manufacturing of metallic components. Mater. Des. 117, 305–315 (2017)

    Article  CAS  Google Scholar 

  29. R. Acharya, R. Bansal, J.J. Gambone, S. Das, A coupled thermal, fluid flow, and solidification model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (Part I). Metall. Mater. Trans. B. 45(6), 2247–2261 (2014)

    Article  CAS  Google Scholar 

  30. J.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic. Mater. Sci. Eng. A. 65(1), 75–83 (1984)

    Article  CAS  Google Scholar 

  31. M. Gäumann, S. Henry, F. Cléton, J.D. Wagnière, W. Kurz, Epitaxial laser metal forming: analysis of microstructure formation. Mater. Sci. Eng. A. 271(1–2), 232–241 (1999)

    Article  Google Scholar 

  32. M. Gäumann, C. Bezençon, P. Canalis, W. Kurz, Single-crystal laser deposition of superalloys: processing–microstructure maps. Acta Mater. 49(6), 1051–1062 (2001)

    Article  Google Scholar 

  33. W. Kurz, C. Bezençon, M. Gäumann, Columnar to equiaxed transition in solidification processing. Sci. Tech. Adv. Mat. 2(1), 185 (2001)

    Article  CAS  Google Scholar 

  34. P. Liu, Z. Wang, Y. Xiao, M.F. Horstemeyer, X. Cui, L. Chen, Insight into the mechanisms of columnar to equiaxed grain transition during metallic additive manufacturing. Addit. Manuf. 26, 22–29 (2019)

    CAS  Google Scholar 

  35. R. Acharya, J.A. Sharon, A. Staroselsky, Prediction of microstructure in laser powder bed fusion process. Acta Mater. 124, 360–371 (2017)

    Article  CAS  Google Scholar 

  36. G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, W.F. Hammetter, Inconel 718: A solidification diagram. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 20, 2149–2158 (1989)

    Article  Google Scholar 

  37. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32, 163–194 (2002)

    Article  CAS  Google Scholar 

  38. S. Ghosh, N. Ofori-Opoku, J.E. Guyer, Simulation and analysis of γ-Ni cellular growth during laser powder deposition of Ni-based superalloys. Comput. Mater. Sci. 144, 256–264 (2018)

    Article  CAS  Google Scholar 

  39. B. Shassere, D. Greeley, A. Okello, M. Kirka, P. Nandwana, R. Dehoff, Correlation of microstructure to creep response of hot isostatically pressed and aged electron beam melted Inconel 718. Metall. Mater. Trans. A. 49(10), 5107–5117 (2018)

    Article  CAS  Google Scholar 

  40. ASTM F3055-14a.: Standard specification for additive manufacturing nickel alloy (UNS N07718) with powder bed fusion and AMS 5663. ASTM International, West Conshohocken, PA (2021)

  41. J. Reiser, A. Hartmaier, Elucidating the dual role of grain boundaries as dislocation sources and obstacles and its impact on toughness and brittle-to-ductile transition. Sci. Rep. 10, 2739 (2020)

    Article  CAS  Google Scholar 

  42. Y. Lin, J. Pan, H.F. Zhou, H.J. Gao, Y. Li, Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater. 153, 279–289 (2018)

    Article  CAS  Google Scholar 

  43. A. Staroselsky, B.N. Cassenti, Combined rate-independent plasticity and creep model for single crystal. Mech. Mater. 42(10), 945–959 (2010)

    Article  Google Scholar 

  44. L. Borkowski, M. Anahid, A. Staroselsky, W. Hu, Microstructure-sensitive large-deformation model for thermomechanical processing simulations. Int. J. Solids Struct. 230, 111161 (2021)

    Article  Google Scholar 

  45. A. Staroselsky, Damage and cracking morphology (In Advances in Fracture and Damage Assessment of Materials. WIT Press, UK, 2004)

    Google Scholar 

  46. Y. Huang, J.W. Hutchinson, V. Tvergaard, Cavitation instabilities in elastic-plastic solids. J. Mech. Phys. Solids. 39(2), 223–241 (1991)

    Article  Google Scholar 

  47. X.P. Xu, A. Needleman, Void nucleation by inclusion debonding in a crystal matrix. Model. Simul. Mat. Sci. Eng. 1(2), 111 (1993)

    Article  Google Scholar 

  48. M. Daňa, I. Zetková, J. Mach, Mechanical properties of Inconel Alloy 718 produced by 3D printing using DMLS. J. Manuf. Technol. 18(4), 559–562 (2018)

    Google Scholar 

  49. M.C. Chaturvedi, Y. Han, Creep deformation of alloy 718. Superalloys. 718, 489–498 (1989)

    Article  Google Scholar 

  50. R.Z. Aminov, A.B. Moskalenko, A.I. Kozhevnikov, Optimal gas turbine inlet temperature for cyclic operation. J. Phys. 1111(1), 12046 (2018)

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Department of Energy under Award Number(s) DE-FE0031642. Disclaimer: "This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Borkowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue credit line: This invited article is part of a special topical focus in the journal Metallography, Microstructure, and Analysis on Microstructure Modeling.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, R., Borkowski, L., Fisher, B. et al. Computational Tools for Additive Manufacture of Tailored Microstructure and Properties. Metallogr. Microstruct. Anal. 12, 906–923 (2023). https://doi.org/10.1007/s13632-023-01023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-01023-4

Keywords

Navigation