Skip to main content
Log in

Effect of Long-Term Exposure on Microstructure and Hardness of Aged Haynes 282 Alloy

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Nickel-based superalloy, Haynes 282, is a promising material for aero and land-based gas turbine applications and advanced ultra-supercritical (AUSC) steam power plants due to its outstanding combination of high thermal stability, high-temperature strength; excellent fatigue, creep and oxidation resistance; remarkable fabricability and weldability. Despite its several budding attributes, the alloy needs further developmental activities to realize material challenges for AUSC applications. In the present study, an attempt was made to investigate the influence of long-term exposure of this alloy at AUSC power plant operating temperature on microstructure and hardness. The alloy was subjected to two-step aging and followed by long-term exposure at 760 °C up to 2000 h. The alloy was also put through single-step aging for comparison purpose. The microstructural characterization of the alloy reveals major phases γ, γ', M23C6 and M6C in single-step and two-step aging and in long-term exposure conditions without any deleterious phases, viz. μ, η, σ phases. The morphology of γ' precipitate and its volume fraction was evaluated by using electron microscope images. Vickers hardness of the alloy increased from 334 ± 3 HV10 in two-step aged condition to 372 ± 2 HV10 upon exposure to 250 h and dropped to 360 ± 2 HV10 at 500 h and thereafter saturated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data supporting the findings of this study can be available from the corresponding author upon request.

References

  1. D.H. Bechetti, J.N. DuPont, J.A. Siefert, J.P. Shingledecker, Microstructural evolution and creep-rupture behavior of A-USC alloy fusion welds. Metall. Mater. Trans. A. 47, 4502–4518 (2016). https://doi.org/10.1007/s11661-016-3603-7

    Article  CAS  Google Scholar 

  2. Y. Yang, Microstructural evolution of large cast Haynes 282 at elevated temperature. Crystals. 11(8), 867 (2021). https://doi.org/10.3390/cryst11080867

    Article  CAS  Google Scholar 

  3. R. Fu, S. Zhao, Y. Wang, Q. Li, Y. Ma, F. Lin, C. Chi, The microstructural evolution of Haynes 282 alloy during long-term exposure tests, in Energy Materials 2014, Conference Proceedings, pp. 193–202 (2014). https://doi.org/10.1002/9781119027973.ch21

  4. K. Vattappara, V.A. Hosseini, C. Joseph, F. Hanning, J. Andersson, Physical and thermodynamic simulations of gamma-prime precipitation in Haynes® 282® using arc heat treatment. J. Alloys Compd. 870, 159484 (2021). https://doi.org/10.1016/j.jallcom.2021.159484. (ISSN 0925-8388)

    Article  CAS  Google Scholar 

  5. A. Deshpande, S. Deb Nath, S. Atre, K. Hsu, Effect of post processing heat treatment routes on microstructure and mechanical property evolution of Haynes 282 Ni-based superalloy fabricated with selective laser melting (SLM). Metals. 10(5), 629 (2020). https://doi.org/10.3390/met10050629

    Article  CAS  Google Scholar 

  6. L.M. Pike, HAYNES® 282™ alloy: a new wrought superalloy designed for improved creep strength and fabricability. Proc. ASME Turbo Expo. (2006). https://doi.org/10.1115/GT2006-91204

    Article  Google Scholar 

  7. C. Joseph, C. Persson, M. HörnqvistColliander, Influence of heat treatment on the microstructure and tensile properties of Ni-base superalloy Haynes 282. Mater. Sci. Eng. A. 679, 520–530 (2017). https://doi.org/10.1016/j.msea.2016.10.048. (ISSN 0921-5093)

    Article  CAS  Google Scholar 

  8. S. Haas, J. Andersson, M. Fisk, J.-S. Park, U. Lienert, Correlation of precipitate evolution with Vickers hardness in Haynes® 282® superalloy: in-situ high-energy SAXS/WAXS investigation. Mater. Sci. Eng. A. 711, 250–258 (2018). https://doi.org/10.1016/j.msea.2017.11.035. (ISSN 0921-5093)

    Article  CAS  Google Scholar 

  9. A. Polkowska, W. Polkowski, M. Warmuzek et al., Microstructure and hardness evolution in Haynes 282 nickel-based superalloy during multi-variant aging heat treatment. J. Mater. Eng. Perform. 28, 3844–3851 (2019). https://doi.org/10.1007/s11665-019-3886-0

    Article  CAS  Google Scholar 

  10. K.A. Unocic, D. Shin, X. Sang, E. Cakmak, P.F. Tortorelli, Single-step aging treatment for a precipitation-strengthened Ni-based alloy and its influence on high temperature mechanical behavior. Scr. Mater. 162, 416–420 (2019). https://doi.org/10.1016/j.scriptamat.2018.11.045. (ISSN 1359-6462)

    Article  CAS  Google Scholar 

  11. L.M. Pike, Development of a fabricable gamma prime (γ') strengthened superalloy, in Proceedings of the International Symposium on Superalloys, pp. 191–200 (2008). https://doi.org/10.7449/2008/Superalloys_2008_191_200

  12. L.M. Pike, Long Term Thermal Exposure of HAYNES 282 Alloy, pp. 645–660 (2010). https://doi.org/10.7449/2010/Superalloys_2010_645_660

  13. X. Zhao, Y. Dang, H. Yin, Y. Yuan, J. Lu, Z. Yang, Y. Gu, Evolution of the microstructure and microhardness of a new wrought Ni–Fe based superalloy during high temperature aging. J. Alloys Compd. 644, 66–70 (2015). https://doi.org/10.1016/j.jallcom.2015.04.184. (ISSN 0925-8388)

    Article  CAS  Google Scholar 

  14. K.-Y. Shin, J.-H. Kim, M. Terner, B.-O. Kong, H.-U. Hong, Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy. Mater. Sci. Eng. A. 751, 311–322 (2019). https://doi.org/10.1016/j.msea.2019.02.054. (ISSN 0921-5093)

    Article  CAS  Google Scholar 

  15. A. Karasev, H. Suito, Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni-M (M= Si, Ti, Al, Zr, and Ce) alloy. Metall. Mater. Trans. B. 30, 259–270 (1999). https://doi.org/10.1007/s11663-999-0055-0

    Article  Google Scholar 

  16. S. Yin, Y. Liu, F. Zhao, Effect of thermomechanical treatment on MX phase precipitation behavior in CLAM steel. Fusion Eng. Des. 173, 112785 (2021). https://doi.org/10.1016/j.fusengdes.2021.112785. (ISSN 0920-3796)

    Article  CAS  Google Scholar 

  17. K.L. Kruger, 15-HAYNES 282 alloy, in Materials for Ultra-supercritical and Advanced Ultra-supercritical Power Plants. ed. by A. Di Gianfrancesco (Woodhead Publishing, Cham, 2017), pp.511–545. https://doi.org/10.1016/B978-0-08-100552-1.00015-4 (ISBN 9780081005521)

    Chapter  Google Scholar 

  18. M.G. Fahrmann, L.M. Pike, Experimental TTT diagram of HAYNES 282 alloy, in The Minerals, Metals & Materials Series. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89480-5_37

  19. C. Tian, G. Han, C. Cui, X. Sun, Effects of stacking fault energy on the creep behaviors of Ni-base superalloy. Mater. Des. 64, 316–323 (2014). https://doi.org/10.1016/j.matdes.2014.08.007. (ISSN 0261-3069)

    Article  CAS  Google Scholar 

  20. G.U.O. Yan, L.I. Tai-jiang, W.A.N.G. Cai-xia, H.O.U. Shu-fang, W.A.N.G. Bo-han, Microstructure and phase precipitate behavior of Inconel 740H during aging. Trans. Nonferrous Metals Soc. China. 26(6), 1598–1606 (2016). https://doi.org/10.1016/S1003-6326(16)64266-8

    Article  CAS  Google Scholar 

  21. P.J. Ennis, A. Strang, S.P. Gill, G.M. McColvin, Microstructural stability of nickel based alloys for advanced power plant applications. Energy Mater. 4(4), 184–188 (2009). https://doi.org/10.1179/174892312X13269692038978

    Article  CAS  Google Scholar 

  22. C.M. Fernandes, A.M.R. Senos, Cemented carbide phase diagrams: a review. Int. J. Refract. Metals Hard Mater. 29(4), 405–418 (2011). https://doi.org/10.1016/j.ijrmhm.2011.02.004. (ISSN 0263-4368)

    Article  CAS  Google Scholar 

  23. J. Andersson, G. Sjöberg, M. Chaturvedi, Hot ductility study of HAYNES® 282® superalloy, in 7th International Symposium on Superalloy 718 and Derivatives, TMS. ed. by E.A. Ott, J.R. Groh, A. Banik, I. Dempster, T.P. Gabb, R. Helmink, X. Liu, A. Mitchell, G.P. Sjörberg, A. Wusatowska-Sarnek (2010), pp.539–554 https://doi.org/10.1002/9781118495223.ch41

  24. L.O. Osoba, R.G. Ding, O.A. Ojo, Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy. Mater Charact. 65, 93–99 (2012). https://doi.org/10.1016/j.matchar.2011.12.009. (ISSN 1044-5803)

    Article  CAS  Google Scholar 

  25. H. Matysiak, M. Zagorska, J. Andersson, A. Balkowiec, R. Cygan, M. Rasinski, M. Pisarek, M. Andrzejczuk, K. Kubiak, K.J. Kurzydlowski, Microstructure of Haynes® 282® superalloy after vacuum induction melting and investment casting of thin-walled components. Materials. 6(11), 5016–5037 (2013). https://doi.org/10.3390/ma6115016

    Article  CAS  Google Scholar 

  26. F. Hanning, A.K. Khan, J. Steffenburg-Nordenström, O. Ojo, J. Andersson, Investigation of the effect of short exposure in the temperature range of 750–950 °C on the ductility of Haynes® 282® by advanced microstructural characterization. Metals. 9(12), 1357 (2019). https://doi.org/10.3390/met9121357

    Article  CAS  Google Scholar 

  27. C. Joseph, C. Persson, M. HörnqvistColliander, Precipitation kinetics and morphology of grain boundary carbides in Ni-base superalloy Haynes 282. Metall. Mater. Trans. A. 51, 6136–6141 (2020). https://doi.org/10.1007/s11661-020-06019-1

    Article  CAS  Google Scholar 

  28. A.S. Shaikh, F. Schulz, K. Minet-Lallemand, E. Hryha, Microstructure and mechanical properties of Haynes 282 superalloy produced by laser powder bed fusion. Mater. Today Commun. 26, 102038 (2021). https://doi.org/10.1016/j.mtcomm.2021.102038. (ISSN 2352-4928)

    Article  CAS  Google Scholar 

  29. J.R. Robertson, Continued developments in the characteristics of HAYNES® 282® alloy for use in A-USC applications, in Proceedings of the ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. Seattle, Washington, USA. April 3–5, 2018. V001T01A007. ASME. https://doi.org/10.1115/ETAM2018-6745

  30. P.D. Jablonski, C.J. Cowen, J.A. Hawk, Effects of Al and Ti on Haynes 282 with fixed gamma prime content, in Proceedings of the 7th International Symposium on Superalloy, vol. 718 (2010). https://doi.org/10.1002/9781118495223.ch48

  31. S. Zhao, X. Xie, G.D. Smith, S.J. Patel, Microstructural stability and mechanical properties of a new nickel-based superalloy. Mater. Sci. Eng. A. 355(1–2), 96–105 (2003). https://doi.org/10.1016/S0921-5093(03)00051-0. (ISSN 0921-5093)

    Article  CAS  Google Scholar 

  32. M. Warmuzek, A. Polkowska, T. Dudziak, P, Characteristics of the evolution of carbide morphology in the Haynes® 230® alloy as a result of high temperature annealing. J. Appl. Mater. Eng. 60, 109–119 (2020)

    Article  CAS  Google Scholar 

  33. J. Caron, L. Pike, Weldability of HAYNES 282 superalloy after long-term thermal exposure. MATEC Web Conf. 14, 13003 (2014). https://doi.org/10.1051/matecconf/20141413003

    Article  Google Scholar 

  34. C. Joseph, M. Thuvander, C. Persson, M.H. Colliander, Precipitation of γ’ during cooling of nickel-base superalloy Haynes 282. Philos. Mag. Lett. 101(1), 30–39 (2021). https://doi.org/10.1080/09500839.2020.1841314

    Article  CAS  Google Scholar 

  35. S. Mukherjee, B.P. Sahu, S.K. Sarkar, S. Ahlawat, A. Biswas, G.K. Mandal, S. Tarafder, S.K. Kar, Temporal evolution of γ′ precipitate in HAYNES 282 during ageing: growth and coarsening kinetics, solute partitioning and lattice misfit. Materialia. 26, 101633 (2022). https://doi.org/10.1016/j.mtla.2022.101633. (ISSN 2589-1529)

    Article  CAS  Google Scholar 

  36. J.A. Hawk, T.-L. Cheng, J.S. Sears, P.D. Jablonski, Y.-H. Wen, Gamma prime stability in Haynes 282: theoretical and experimental considerations. J. Mater. Eng. Perform. 24, 4171–4181 (2015). https://doi.org/10.1007/s11665-015-1711-y

    Article  CAS  Google Scholar 

  37. D.M. Collins, L. Yan, E.A. Marquis, L.D. Connor, J.J. Ciardiello, A.D. Evans, H.J. Stone, Lattice misfit during ageing of a polycrystalline nickel-base superalloy. Acta Mater. 61(20), 7791–7804 (2013). https://doi.org/10.1016/j.actamat.2013.09.018. (ISSN 1359-6454)

    Article  CAS  Google Scholar 

  38. S. Jiang, Z. Tian, W. Liu, H. Chen, Z. Yang, Z. Liu, C. Zhang, Y. Weng, Microstructural evolution and hardness of a heat resistant alloy during long term aging at 700 °C. J. Alloys Compd. 765, 1267–1274 (2018). https://doi.org/10.1016/j.jallcom.2018.05.263. (ISSN 0925-8388)

    Article  CAS  Google Scholar 

  39. Ł Rakoczy, M. Grudzień-Rakoczy, F. Hanning, G. Cempura, R. Cygan, J. Andersson, A. Zielińska-Lipiec, Investigation of the γ′ precipitates dissolution in a Ni-based superalloy during stress-free short term annealing at high homologous temperatures. Metall. Mater. Trans. A. 52, 4767–4784 (2021). https://doi.org/10.1007/s11661-021-06420-4

    Article  CAS  Google Scholar 

  40. J. Zhang, L. Liu, T. Huang, J. Chen, K. Cao, X. Liu, J. Zhang, Fu. Hengzhi, Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging. J. Mater. Sci. Technol. 62, 1–10 (2021). https://doi.org/10.1016/j.jmst.2020.05.034. (ISSN 1005-0302)

    Article  CAS  Google Scholar 

  41. Y. Jinxia, Z. Qi, S. Xiaofeng, G. Hengrong, H. Zhuangq, Morphological evolution of MC carbide in K465 superalloy. J. Mater. Sci. 41, 6476–6478 (2006). https://doi.org/10.1007/s10853-006-0684-5

    Article  CAS  Google Scholar 

  42. J.M. Larson, Carbide morphology in p/m IN-792. Metall. Mater. Trans. A. 7, 1497–1502 (1976). https://doi.org/10.1007/BF02656391

    Article  Google Scholar 

  43. P. Zhang, Y. Yuan, H. Yin, Y. Gu, J. Wang, M. Yang, G. Yang, X. Song, Tensile properties and deformation mechanisms of Haynes 282 at various temperatures. Metall. Mater. Trans. A. 49, 1571–1578 (2018). https://doi.org/10.1007/s11661-018-4515-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Bharat Heavy Electricals Limited (BHEL) (R&D), Hyderabad for providing Haynes 282 alloy for carrying out this work. Authors also thank Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad for their help in FESEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. S. Nageswara Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damodhar Naidu, G., Nageswara Rao, G.V.S. & Chaube, R.K. Effect of Long-Term Exposure on Microstructure and Hardness of Aged Haynes 282 Alloy. Metallogr. Microstruct. Anal. 12, 965–985 (2023). https://doi.org/10.1007/s13632-023-01009-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-01009-2

Keywords

Navigation