Skip to main content

Advertisement

Log in

Evaluation of Microstructure, Mechanical Properties, Wear Resistance and Corrosion Behaviour of Friction Stir-Processed AZ31B-H24 Magnesium Alloy

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In the present investigation, friction stir processing has been done on AZ31B-H24 virgin magnesium alloy. Traversing speed and rotational speed of tool were 20–80 mm/min and 900 rpm, respectively. Microstructure, micro-hardness, wear resistance and corrosion property of processed alloy were investigated. Friction stir processing produced ultra-fine grain of 2.5–3 μm size at weld nugget. Micro-hardness at weld nugget was in the range of 68–72 VHN and became higher than that of the virgin alloy (~ 59 VHN). Maximum tensile strength of ~ 218 MPa, yield strength of ~ 122 MPa, and total elongation of ~ 8.1% were obtained for friction stir-processed magnesium alloy, when produced with 80 mm/min tool traversing speed. Reduction in specific wear rate for all specimens was more than 99% when compared with virgin alloy. The finding was attributed to the change in mechanism of wear from virgin to processed alloy. Micro-cutting/micro-groove formation was evident during wear for virgin alloy; on the contrary, friction stir-processed specimens exhibited micro-ploughing along with wide, blunt, and restricted groove formation. Corrosion resistance of same specimens was reduced as compared to virgin material (~ 0.08 mm/year). Maximum corrosion rate was observed for specimen processed at 80 mm/min tool traversing speed (~ 0.24 mm/year). It is noteworthy that overall corrosion resistance of friction stir-processed alloy was enhanced with decrement in tool traversing speed. At the same time with reference to available literature data, the corrosion resistance of Mg alloy in present experimentation revealed improvement with respect to various Mg alloys, produced through other complementary techniques. The significant improvement in wear resistance along with little reduction in corrosion resistance was attributed to the structural modification of friction stir-processed Mg alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, G.B. Patent Application No. 9125978.8, Dec. 1991.

  2. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. R. 50, 1–78 (2005)

    Article  Google Scholar 

  3. H. Zhang, S.B. Lin, L. Wu, J.C. Feng, Microstructural studies of friction stir welded AZ31 magnesium alloy. Acta Metal. Sinica. 17, 747–753 (2004)

    CAS  Google Scholar 

  4. D.R. Ni, J.J. Wang, Z.N. Zhou, Z.Y. Ma, Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. J. Alloy Compd. 586, 368–374 (2014)

    Article  CAS  Google Scholar 

  5. M. Vargas, S. Lathabai, Microstructure and mechanical properties of a friction stir processed Al-Zn-Mg-Cu alloy. Mater. Sci. Fourm. 654–656, 1428–1431 (2010)

    Article  Google Scholar 

  6. K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, Improvement of mechanical properties of aluminium die casting alloy by multi-pass friction stir processing. Mater. Sci. Eng. A. 237, 274–280 (2006)

    Article  Google Scholar 

  7. G.R. Cui, Z.Y. Ma, S.X. Li, The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al-Mg alloy. Acta Mater. 57, 5718–5729 (2009)

    Article  CAS  Google Scholar 

  8. Z.Y. Ma, Friction stir processing technology—a review. Metall. Mater. Trans. A. 39, 642–658 (2008)

    Article  Google Scholar 

  9. R.S. Mishra, L. Johannes, I. Charit, A. Dutta, Multi-pass friction stir superplasticity in aluminium alloys. Proc. Natl. Sci. Found. 1, 171 (2005)

    Google Scholar 

  10. G.K. Padhy, C.S. Wu, S. Gao, Friction stir based welding and processing technologies—processes, parameters, microstructures and applications: a review. J. Mater. Sci. Technol. 34, 1–38 (2018)

    Article  Google Scholar 

  11. P.R. Guru, F.K. Mohammad, S. Panigrahi, G.D. Janaki Ram, Enhancing strength, ductility and machinability of a Al–Si cast alloy by friction stir processing. J. Manf. Process. 18, 67–76 (2015)

    Article  Google Scholar 

  12. G. Song, A. Atrens, Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11–33 (1999)

    Article  CAS  Google Scholar 

  13. R.C. Zeng, K.E. Wei, X. Yong-bo, H. En-hou, Z. Zi-yong, Recent development and application of magnesium alloys. Acta Metal. Sinica. 37, 673–685 (2001)

    CAS  Google Scholar 

  14. B.L. Mordike, T. Ebert, Magnesium: properties- applications-potential. Mater. Sci. Eng. A. 302, 37–45 (2001)

    Article  Google Scholar 

  15. Z. Xiuqing, W. Haowei, L. Lihua, T. Xinying, M. Naiheng, The mechanical properties of magnesium matrix composites reinforced with (TiB2 + TiC) ceramic particulates. Mater. Lett. 59, 2105–2109 (2005)

    Article  Google Scholar 

  16. H.Z. Ye, X.Y. Liu, Review of recent studies in magnesium matrix composites. J. Mater. Sci. 39, 6153–6171 (2004)

    Article  CAS  Google Scholar 

  17. D.R. Fang, S.S. Zhao, X.P. Lin, T. Chai, Y. Kuo, H. Sun, Y. Dong, Correlation between microstructure and mechanical properties of columnar crystals in the directionally solidified Mg-Gd-Y-Er alloy. J. Magn. Alloys. 10(3), 743–755 (2022)

    Article  CAS  Google Scholar 

  18. K.K. Ajith Kumar, A. Srinivasan, U.T.S. Pillai, B.C. Pai, M. Chakraborty, Microstructure and mechanical property correlation of Mg-Si alloys. Silicon. 14, 9499–9515 (2022)

    Article  CAS  Google Scholar 

  19. P. Vignesh, A. Abraham, S. Kumaran, Microstructural correlation of cross rolling temperature of AT55 magnesium alloy in mechanical and formability behaviour. Micron. 160, 103305 (2022)

    Article  CAS  Google Scholar 

  20. F. Badkoobeh, H. Mostaan, M. Rafiei, H.R. Bakhsheshi-Rad, F. Berto, Friction stir welding/processing of Mg-based alloys: a critical review on advancements and challenges. Materials (Basel). 14(21), 6726 (2021). https://doi.org/10.3390/ma14216726

    Article  CAS  Google Scholar 

  21. A.M. Desai, B.C. Khatri, V. Patel, H. Rana, Friction stir welding of AZ31 magnesium alloy: a review. Mater. Today: Proc. 47(19), 6576–6584 (2021)

    CAS  Google Scholar 

  22. K. Singh, G. Singh, H. Singh, Review on friction stir welding of magnesium alloys. J. Magn. Alloys. 6(4), 399–416 (2018)

    Article  CAS  Google Scholar 

  23. B. Hassani, F. Karimzadeh, M.H. Enayati, S. Sabooni, R. Vallant, Effect of friction stir processing on microstructure and mechanical properties of AZ91C Magnesium cast alloy weld zone. J. Mater. Eng. Perform. 25, 2776–2785 (2016)

    Article  CAS  Google Scholar 

  24. B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, M.A. Omar, Friction stir processing of commercial AZ31 magnesium alloy. J. Mater. Process. Technol. 191, 77–81 (2007)

    Article  CAS  Google Scholar 

  25. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mat. Sci. Eng. A. 433, 50–54 (2006)

    Article  Google Scholar 

  26. H.S. Arora, H. Singh, B.K. Dhindaw, Corrosion behavior of a Mg alloy AE42 subjected to friction stir processing. Corrosion Sci. Section. 69(2), 122–135 (2013)

    Article  CAS  Google Scholar 

  27. H.S. Arora, H. Singh, B.K. Dhindaw, Some observations on microstructural changes in a Mg-Based AE42 alloy subjected to friction stir processing. Metallur. Mater. Trans. B. 43B, 92–108 (2012)

    Article  Google Scholar 

  28. Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, Q.Y. Shi, Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing. Corros. Sci. 138, 284–296 (2018)

    Article  CAS  Google Scholar 

  29. T. Itoi, K. Gonda, M. Hirohashi, Relationship of wear properties to basal-plane texture of worn surface of Mg alloys. Wear. 270, 606–612 (2011)

    Article  CAS  Google Scholar 

  30. Y.S. Sato, H. Kokawa, M. Enmoto, S. Jogan, Microstructural evolution of 6063 aluminum during friction-stir welding. Metall. Mater. Trans. A. 30, 2429–2437 (1999)

    Article  Google Scholar 

  31. W.J. Arbegast, P.J. Hartley, in Proceedings of the Fifth International Conference on Trends in Welding Research, Pine Mountain, GA, USA, June 1–5, 1998.

  32. C. Gang, C. Wei, Z. Guowie, Z. Shunqi, Z. Zhimin, Microstructures and mechanical properties of Al-12Zn-2.4Mg-1.2Cu alloy under different deformation ways. Rare Metal Mater. Eng. 45(9), 2237–2241 (2016)

    Article  Google Scholar 

  33. S.H.C. Park, Y.S. Sato, H. Kokawa, Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test. Scripta Marer. 49(2), 161–166 (2003)

    CAS  Google Scholar 

  34. X. Cao, M. Jahazi, Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy. Mater. Design. 30, 2033–2042 (2009)

    Article  CAS  Google Scholar 

  35. M. Pourbaix, in Atlas of electrochemical equilibria in aqueous solutions. English ed. Texas: National Association of Corrosion Engineers, (1974).

  36. W.B. White, Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in karst terrains. Environ. Geol. 30, 46–58 (1997)

    Article  CAS  Google Scholar 

  37. G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, F. Wang, X. Cheng, C. Dong, X. Li, Effect of microstructures on corrosion behavior of nickel coatings: (II) competitive effect of grain size and twins density on corrosion behavior. J. Mater. Sci. Technol. 32, 465–469 (2016)

    Article  CAS  Google Scholar 

  38. Y.J. Liu, Z.Y. Wang, W. Ke, Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al. Corros. Sci. 80, 169–176 (2014)

    Article  CAS  Google Scholar 

  39. L.J. Yang, Y.H. Wei, L.F. Hou, D. Zhang, Corrosion behavior of die-cast AZ91D magnesium alloy in aqueous sulphate solutions. Corros. Sci. 52, 345–351 (2010)

    Article  CAS  Google Scholar 

  40. R.V. Barenji, Effect of tool traverse speed on microstructure and mechanical performance of friction stir welded 7020 aluminum alloy. J Mater. Design Appl. 230, 1–11 (2015)

    Google Scholar 

  41. H. Zhang, Friction stir welding of magnesium alloys, in Welding and Joining of Mg alloys, Woodhead Publishing Series in Welding and Other Joining Technologies. (Woodhead Publishing, Sawston, 2010), pp.274–305 https://doi.org/10.1533/9780857090423.2.274

    Chapter  Google Scholar 

  42. M. Ghosh, K. Kumar, R.S. Mishra, Analysis of microstructural evolution during friction stir welding of ultrahigh-strength steel. Scripta Mater. 63, 851–854 (2010)

    Article  CAS  Google Scholar 

  43. W. Wanchuck, B. Levente, T. Ungár, H. Chooa, Z. Feng, Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis. Mater. Sci. Eng. A. 498, 308–313 (2008)

    Article  Google Scholar 

  44. Z. Gao, J. Feng, Z. Wang, J. Niu, C. Sommitsch, Dislocation density-based modeling of dynamic recrystallized microstructure and process in friction stir spot welding of AA6082. Materials. 9(672), 1–15 (2019)

    Google Scholar 

  45. H. Khodaverdizadeh, A. Mahmoudi, A. Heidarzadeh, E. Nazari, Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater. Design. 35, 330–334 (2012)

    Article  CAS  Google Scholar 

  46. Z. Liu, J. Sun, Z. Yan, Y. Lin, M. Liu, H.J. Roven, A.K. Dahle, Enhanced ductility and strength in a cast Al–Mg alloy with high Mg content. Mater. Sci. Eng. A. 806, 140806 (2021). https://doi.org/10.1016/j.msea.2021.140806

    Article  CAS  Google Scholar 

  47. U.S. Joshi, D. Tripathi, V.A. Rana, R.B. Jotania, P.N. Gajjar, Kinetics of γ-Mg17Al12 phase dissolution and its effect on room temperature tensile properties in As-Cast AZ80 magnesium alloy. Solid Sate Phenom. 209, 207–211 (2013)

    Article  Google Scholar 

  48. M. Ghosh, K. Kumar, R.S. Mishra, Friction stir lap welded advanced high strength steels: microstructure and mechanical properties. Mats. Sci. Eng. A. 528, 8111–8119 (2011)

    Article  CAS  Google Scholar 

  49. S. Ramaiyan, R. Chandran, S. Kumar, V. Santhanam, Effect of cooling conditions on mechanical and microstructural behaviours of friction stir processed AZ31B Mg alloy. Modern Mech. Eng. 7, 144–160 (2017)

    Article  CAS  Google Scholar 

  50. L.A. Dobrzański, M. Król, T. Tański, Thermal analysis, structure and mechanical properties of the MC MgAl3Zn1 cast alloy. J. Achiev. Mater. Manuf. Eng. 40, 167–174 (2010)

    Google Scholar 

  51. F. Chai, D. Zhang, Y. Li, Effect of thermal history on microstructure and mechanical properties of AZ31 Mg alloy prepared by friction stir processing. Materials. 7, 1573–1589 (2014)

    Article  CAS  Google Scholar 

  52. S. Rajakumar, C. Muralidharan, V. Balasubramanian, Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Mater. Design. 32(2), 535–549 (2011)

    Article  CAS  Google Scholar 

  53. A. Barcellona, G. Buffa, L. Fratini, D. Palmeri, On microstructural phenomena occurring in friction stir welding of aluminium alloys. J. Mater. Process. Technol. 177, 340–343 (2006)

    Article  CAS  Google Scholar 

  54. L. Sunggon, K. Sangshik, L. Chang-Gil, K. Sungjoon, Tensile behavior of friction-stir-welded Al 6061–T651. Metall. Mater. Trans. A. 35, 2829–2835 (2004)

    Article  Google Scholar 

  55. H. Seifiyan, M.H. Sohi, M. Ansari, D.A. Khaniha, M. Saremi, Influence of friction stir processing conditions on corrosion behavior of AZ31B magnesium alloy. J. Magn. Alloys. 7, 605–616 (2019)

    Article  CAS  Google Scholar 

  56. K. Michal, M. Peter, Effect of aluminium content precipitation on the corrosion behaviour and acoustic emission response of AZ31 and AZ80 Mg alloy, Proceedings 28th International Conference on Metallurgy and Materials, Hotel Voronez I, Brno, Czech Republic, EU, May 22nd - 24th 2019, pp. 1732–1737, https://doi.org/10.37904/metal.2019.940.

  57. T. Oršulová, P. Palček, Changes in hardness of magnesium alloys due to precipitation hardening. Prod. Eng. Archives. 18, 46–49 (2018)

    Article  Google Scholar 

  58. J. Stráská, M. Janeček, J. Čížek, J. Stráský, B. Hadzima, Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP). Mater. Charac. 94, 69–79 (2014)

    Article  Google Scholar 

  59. S. Mironova, T. Onumaa, Y.S. Satoa, S. Yoneyamab, H. Kokawaa, Tensile behavior of friction-stir welded AZ31 magnesium alloy. Mater. Sci. Eng. A. 679, 272–281 (2017)

    Article  Google Scholar 

  60. D. Yadav, R. Bauri, Effect of friction stir processing on microstructure and mechanical properties of aluminium. Mater. Sci. Eng. A. 539, 85–92 (2012)

    Article  CAS  Google Scholar 

  61. N.P. Suh, An overview of the delamination theory of wear. Wear. 44, 1–16 (1977)

    Article  Google Scholar 

  62. S. Kumar, W.A. Curtin, Crack interaction with microstructure. J. Mater. Today. 10(9), 34–44 (2007)

    Article  Google Scholar 

  63. T.A. Freeney, R.S. Mishra, Effect of friction stir processing on microstructure and mechanical properties of a cast-magnesium–rare earth alloy. Metall. Mater. Trans. A. 41A, 73–84 (2009)

    Google Scholar 

  64. A.H. Feng, B.L. Xiao, Z.Y. Ma, R.S. Chen, Effect of friction stir processing procedures on microstructure and mechanical properties of Mg-Al-Zn casting. Metall. Mater. Trans. A. 40A, 2447–2456 (2009)

    Article  CAS  Google Scholar 

  65. X. Ma, S. Jin, R. Wu, J. Wang, G. Wang, B. Krit, S. Betsofen, Corrosion behavior of Mg−Li alloys: a review. Trans. Nonfer. Metals Soc. China. 31, 3228–3254 (2021)

    Article  CAS  Google Scholar 

  66. M.Ö. Öteyaka, E. Ghali, R. Tremblay, Corrosion behaviour of AZ and ZA magnesium alloys in alkaline chloride media. Int. J. Corros. 2012, 452631 (2012). https://doi.org/10.1155/2012/452631

    Article  CAS  Google Scholar 

  67. A.D. Südholz, N. Birbilis, C.J. Bettles, M.A. Gibson, Corrosion behaviour of Mg-alloy AZ91E with atypical alloying additions. J. Alloys Compd. 471(1–2), 109–115 (2009)

    Article  Google Scholar 

  68. A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corros. Scie. 50, 823–834 (2008)

    Article  CAS  Google Scholar 

  69. T. Valente, Grain boundary effects on the behavior of WE43 magnesium castings in simulated marine environment. J. Mat. Sci. Lett. 20, 67–69 (2001)

    Article  CAS  Google Scholar 

  70. J.H. Dong, L.L. Tan, Y.B. Ren, K. Yang, Effect of microstructure on corrosion behavior of Mg-Sr alloy in Hank’s solution. Acta Met. Sinica. 32(3), 305–320 (2019)

    CAS  Google Scholar 

  71. E. Ghali, W. Dietzel, K.U. Kainer, General and localized corrosion of magnesium alloys: a critical review. J. Mater. Eng. Perform. 13(1), 7–23 (2004)

    Article  CAS  Google Scholar 

  72. Y. Pei, Y. Gui, T. Huang, F. Chen, J. Guo, S. Zhong, Z. Song, Microstructure and corrosion behaviors of AZ63 magnesium alloy fabricated by accumulative roll bonding process. Mat. Res. Express. 7, 066525 (2020). https://doi.org/10.1088/2053-1591/ab9c61

    Article  CAS  Google Scholar 

  73. A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corros. Sci. 50, 823–834 (2008)

    Article  CAS  Google Scholar 

  74. R.C. Zeng, Z.Z. Yin, X.B. Chen, D.K. Xu, Corrosion types of Mg alloys, in MG Alloys-Selected Issue. ed. by T. Tański, W. Borek, M. Król (InTech, London, 2018) https://doi.org/10.5772/intechopen.81761

    Chapter  Google Scholar 

  75. T. Majeed, Y. Mehta, A.N. Siddiquee, Precipitation-dependent corrosion analysis of heat treatable aluminum alloys via friction stir welding, a review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235(24), 7600–7626 (2021)

    Article  CAS  Google Scholar 

  76. A. Kumar, M.F. Khan, S.K. Panigrahi, G.P. Chaudhari, Microstructural evolution and corrosion behaviour of friction stir-processed QE22 magnesium alloy. Corros. Rev. 2021, 1–10 (2021). https://doi.org/10.1515/corrrev-2020-0083

    Article  CAS  Google Scholar 

  77. B.R. Sunil, K.V. Ganesh, P. Pavan, G. Vadapalli, C. Swarnalatha, P. Swapna, P. Bindukumar, G.P.K. Reddy, Effect of aluminum content on machining characteristics of AZ31 and AZ91 magnesium alloys during drilling. J. Magn. Alloys. 4, 15–21 (2016)

    Article  CAS  Google Scholar 

  78. B. Demir, E. Koc, A.N. Saud, Effect of weld currents on microstructure, corrosion behavior of AZ31 magnesium alloy. J. Bio- Tribo Corros. 57(7), 1–8 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-National Metallurgical Laboratory, Jamshedpur, for providing infrastructural support for this activity and kind permission for communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husain, M.M., Haldar, N., Meena, L.K. et al. Evaluation of Microstructure, Mechanical Properties, Wear Resistance and Corrosion Behaviour of Friction Stir-Processed AZ31B-H24 Magnesium Alloy. Metallogr. Microstruct. Anal. 12, 34–48 (2023). https://doi.org/10.1007/s13632-023-00933-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-00933-7

Keywords

Navigation