Skip to main content
Log in

(FeMnNi)84(AlTi)16 High-Entropy Alloy: Correlation of Microstructure, Strengthening Mechanisms and Hardness at Various Conditions (As-Cast, Solution Treated, Aged)

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

A (FeMnNi)84(AlTi)16 high-entropy alloy was produced by vacuum arc melting successfully. The microstructure of the as-cast state showed the existence of two FCC phases along with potential precipitates. The solution treatment response of the alloy for 2 h at 1150 °C and the effect of aging time at 750 °C in the microstructure and microhardness were also evaluated. It was observed that the solution treatment parameters were insufficiently low to dissolve the as-cast precipitates into the matrix. The double FCC matrix identified may be correlated with a solidification range and insufficient diffusion during the solidification process. The maximum hardness at 90 min aging time can be mainly attributed to the precipitation shearing mechanism in both matrix areas. The lower hardness value reported at 160 h aging time was estimated that it is derived by the change of the main strengthening mechanism from shearing to Orowan. The island-like precipitates that depleted Ti element from the Ni-rich intergranular area may be identified as a Ni2AlTi Heusler phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 375–377(1–2), 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  2. J.W. Yeh et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  3. Y. Zhang, High entropy materials: A brief introduction, 1st edn (Springer Nature Singapore Pte Ltd., Singapore, 2019) https://doi.org/10.1007/978-981-13-8526-1

    Book  Google Scholar 

  4. P. P. Murty, B.S., Yeh, J.W., Ranganathan, S., Bhattacharjee, High-Entropy Alloys, 2nd Edition. 2019. doi: https://doi.org/10.1016/B978-0-12-816067-1.00002-3

  5. M. C. G. J. Yeh, P. K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, 1st Edition. 2016. doi: https://doi.org/10.1007/978-3-319-27013-5

  6. R. Wang et al., Effect of lattice distortion on the diffusion behavior of high-entropy alloys. J. Alloys Compd. 825, 154099 (2020). https://doi.org/10.1016/j.jallcom.2020.154099

    Article  CAS  Google Scholar 

  7. R.O. Ritchie, The conflicts between strength and toughness. Nat. Mater. 10(11), 817–822 (2011). https://doi.org/10.1038/nmat3115

    Article  CAS  Google Scholar 

  8. Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, C.T. Liu, Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles. Acta Mater. 84, 283–291 (2015). https://doi.org/10.1016/j.actamat.2014.10.065

    Article  CAS  Google Scholar 

  9. W. Steurer, Single-phase high-entropy alloys – A critical update. Mater. Charact. 162, 110179 (2020). https://doi.org/10.1016/j.matchar.2020.110179

    Article  CAS  Google Scholar 

  10. Y.T. Chen, Y.J. Chang, H. Murakami, S. Gorsse, A.C. Yeh, Designing high entropy superalloys for elevated temperature application. Scr. Mater. 187, 177–182 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.002

    Article  CAS  Google Scholar 

  11. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 534(7606), 227–230 (2016). https://doi.org/10.1038/nature17981

    Article  CAS  Google Scholar 

  12. L. Lin et al., A multi-phase CrMnFeCoNiAl0.75 high-entropy alloy with high strength at intermediate temperature. Intermetallics. 120, 106744 (2020). https://doi.org/10.1016/j.intermet.2020.106744

    Article  CAS  Google Scholar 

  13. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 19(5), 698–706 (2011). https://doi.org/10.1016/j.intermet.2011.01.004

    Article  CAS  Google Scholar 

  14. W. Guo, W. Dmowski, J.Y. Noh, P. Rack, P.K. Liaw, T. Egami, Local atomic structure of a high-entropy alloy: An X-Ray and neutron scattering study. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44(5), 1994–1997 (2013). https://doi.org/10.1007/s11661-012-1474-0

    Article  CAS  Google Scholar 

  15. J. Yaacoub, W. Abuzaid, F. Brenne, H. Sehitoglu, Superelasticity of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy. Scr. Mater. 186, 43–47 (2020). https://doi.org/10.1016/j.scriptamat.2020.04.017

    Article  CAS  Google Scholar 

  16. Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep01455

    Article  CAS  Google Scholar 

  17. S.P. Wang, J. Xu, TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng. C. 73, 80–89 (2017). https://doi.org/10.1016/j.msec.2016.12.057

    Article  CAS  Google Scholar 

  18. P. Edalati et al., Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scr. Mater. 178, 387–390 (2020). https://doi.org/10.1016/j.scriptamat.2019.12.009

    Article  CAS  Google Scholar 

  19. N. Ishizu, J. Kitagawa, New high-entropy alloy superconductor Hf21Nb25Ti15V15Zr24. Results Phys. 13(April), 102275 (2019). https://doi.org/10.1016/j.rinp.2019.102275

    Article  Google Scholar 

  20. D. Li et al., Acta Materialia High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 123, 285–294 (2017). https://doi.org/10.1016/j.actamat.2016.10.038

    Article  CAS  Google Scholar 

  21. C.B. Aksoy, D. Canadinc, M.B. Yagci, Assessment of Ni ion release from TiTaHfNbZr high entropy alloy coated NiTi shape memory substrates in artificial saliva and gastric fluid. Mater. Chem. Phys. 236(April), 121802 (2019). https://doi.org/10.1016/j.matchemphys.2019.121802

    Article  CAS  Google Scholar 

  22. V. Braic, M. Balaceanu, M. Braic, A. Vladescu, S. Panseri, A. Russo, Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed. Mater. 10, 197–205 (2012). https://doi.org/10.1016/j.jmbbm.2012.02.020

    Article  CAS  Google Scholar 

  23. T. Yang, Y. Zhao, W. Liu, J. Kai, C. Liu, L12 -strengthened high-entropy alloys for advanced structural applications. J. Mater. Res. 33, 32–41 (2018). https://doi.org/10.1557/jmr.2018.186

    Article  CAS  Google Scholar 

  24. E.S. Huron et al., Superalloys 2012 (Wiley, New York, 2012) https://doi.org/10.7449/2012/Superalloys_2012_179_188.pdf

    Book  Google Scholar 

  25. T. Tsao et al., The high temperature tensile and creep behaviors of high entropy superalloy. Sci. Rep. 7(June), 1–9 (2017). https://doi.org/10.1038/s41598-017-13026-7

    Article  CAS  Google Scholar 

  26. C.M. Kuo, C.W. Tsai, Effect of cellular structure on the mechanical property of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy alloy. Mater. Chem. Phys. 210, 103–110 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.064

    Article  CAS  Google Scholar 

  27. Y. Zheng, N. Jia, F. Qian, J. Wang, Y. Xue, K. Jin, Thermal stability of (CoCrFeNi)94Ti2Al4 alloy containing coherent nanoprecipitates at intermediate temperatures. Materialia. 12, 100775 (2020). https://doi.org/10.1016/j.mtla.2020.100775

    Article  CAS  Google Scholar 

  28. H. Peng, L. Hu, L. Li, W. Zhang, Ripening of L12 nanoparticles and their effects on mechanical properties of Ni28Co28Fe21Cr15Al4Ti4 high-entropy alloys. Mater. Sci. Eng. A. 772(September 2019), 138803 (2020). https://doi.org/10.1016/j.msea.2019.138803

    Article  CAS  Google Scholar 

  29. S. Adil et al., On the effect of Fe in L12 strengthened Al–Co–Cr–Fe–Ni–Ti complex concentrated alloy. Materialia. 14, 100909 (2020). https://doi.org/10.1016/j.mtla.2020.100909

    Article  CAS  Google Scholar 

  30. H. Peng, L. Hu, L. Li, J. Gao, Q. Zhang, On the correlation between L12 nanoparticles and mechanical properties of (NiCo)52+2x(AlTi)4+2xFe29-4xCr15 (x=0-4) high-entropy alloys. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152750

    Article  Google Scholar 

  31. V. Nandal et al., Enhanced age hardening effects in FCC based Co1.5CrFeNi1.5 high entropy alloys with varying Ti and Al contents. Materialia. 13(July), 100823 (2020). https://doi.org/10.1016/j.mtla.2020.100823

    Article  CAS  Google Scholar 

  32. P. Bała, K. Górecki, W. Bednarczyk, M. Watroba, S. Lech, J. Kawałko, Effect of high-temperature exposure on the microstructure and mechanical properties of the Al5Ti5Co35Ni35Fe20 high-entropy alloy. J. Mater. Res. Technol. 9(1), 551–559 (2020). https://doi.org/10.1016/j.jmrt.2019.10.084

    Article  CAS  Google Scholar 

  33. T. Yang et al., Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys. Acta Mater. 189, 47–59 (2020). https://doi.org/10.1016/j.actamat.2020.02.059

    Article  CAS  Google Scholar 

  34. D. Chen et al., Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys. Intermetallics. 110(April), 106476 (2019). https://doi.org/10.1016/j.intermet.2019.106476

    Article  CAS  Google Scholar 

  35. Y.Y. Zhao, H.W. Chen, Z.P. Lu, T.G. Nieh, Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy. Acta Mater. 147, 184–194 (2018). https://doi.org/10.1016/j.actamat.2018.01.049

    Article  CAS  Google Scholar 

  36. K. Ming, X. Bi, J. Wang, Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates. Int. J. Plast. 100, 177–191 (2018). https://doi.org/10.1016/j.ijplas.2017.10.005

    Article  CAS  Google Scholar 

  37. T. Yang et al., Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science (80-). 362(6417), 933–937 (2018). https://doi.org/10.1126/science.aas8815

    Article  CAS  Google Scholar 

  38. Y.L. Zhao et al., Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 138, 72–82 (2017). https://doi.org/10.1016/j.actamat.2017.07.029

    Article  CAS  Google Scholar 

  39. Z. Wang, A. Genc, I. Baker, Direct versus indirect particle strengthening in a strong, ductile FeNiMnAlTi high entropy alloy. Mater. Charact. 132(August), 156–161 (2017). https://doi.org/10.1016/j.matchar.2017.08.019

    Article  CAS  Google Scholar 

  40. J.Y. He et al., Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics. 79, 41–52 (2016). https://doi.org/10.1016/j.intermet.2016.09.005

    Article  CAS  Google Scholar 

  41. J.Y. He et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187–196 (2016). https://doi.org/10.1016/j.actamat.2015.08.076

    Article  CAS  Google Scholar 

  42. H.M. Daoud, A.M. Manzoni, N. Wanderka, U. Glatzel, High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). Jom. 67(10), 2271–2277 (2015). https://doi.org/10.1007/s11837-015-1484-7

    Article  CAS  Google Scholar 

  43. C.W. Lin, M.H. Tsai, C.W. Tsai, J.W. Yeh, S.K. Chen, Microstructure and aging behaviour of Al5Cr32Fe35Ni22Ti6 high entropy alloy. Mater. Sci. Technol. (United Kingdom). 31(10), 1165–1170 (2015). https://doi.org/10.1179/1743284715Y.0000000025

    Article  CAS  Google Scholar 

  44. Y. Qi, Y. Wu, T. Cao, L. He, F. Jiang, J. Sun, L21-strengthened face-centered cubic high-entropy alloy with high strength and ductility. Mater. Sci. Eng. A. 797, 140056 (2020). https://doi.org/10.1016/j.msea.2020.140056

    Article  CAS  Google Scholar 

  45. Y.T. Chen et al., Hierarchical microstructure strengthening in a single crystal high entropy superalloy. Sci. Rep. 10(1), 1–12 (2020). https://doi.org/10.1038/s41598-020-69257-8

    Article  CAS  Google Scholar 

  46. S. Gorsse, Y.T. Chen, W.C. Hsu, H. Murakami, A.C. Yeh, Modeling the precipitation processes and the formation of hierarchical microstructures in a single crystal high entropy superalloy. Scr. Mater. 193, 147–152 (2021). https://doi.org/10.1016/j.scriptamat.2020.11.002

    Article  CAS  Google Scholar 

  47. S. Dasari et al., Discontinuous precipitation leading to nano-rod intermetallic precipitates in an Al0.2Ti0.3Co1.5CrFeNi1.5 high entropy alloy results in an excellent strength-ductility combination. Mater. Sci. Eng. A. (2020). https://doi.org/10.1016/j.msea.2020.140551

    Article  Google Scholar 

  48. R.C. Reed, The superalloys: fundamentals and applications. Cambridge University Press. (2016). https://doi.org/10.1017/CBO9780511541285.004

    Article  Google Scholar 

  49. T. Rieger, J. Joubert, L. Perrière, I. Guillot, J. Couzinié, Materialia Study of the FCC + L12 two-phase region in complex concentrated alloys based on the Al–Co–Cr–Fe–Ni–Ti system. Materialia. 14, 100905 (2020). https://doi.org/10.1016/j.mtla.2020.100905

    Article  CAS  Google Scholar 

  50. S. Jiang et al., Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature. 544(7651), 460–464 (2017). https://doi.org/10.1038/nature22032

    Article  CAS  Google Scholar 

  51. R.C. Reed, C.M.F. Rae, Physical Metallurgy of the Nickel- Based Superalloys (Elsevier, Amsterdam, 2014), p. 2215. https://doi.org/10.1016/B978-0-444-53770-6.00022-8

    Book  Google Scholar 

  52. R. Singh, Applied Welding Engineering: Processes, Codes, and Standarts, 3rd Edition, Butterworth-Heinemann, 2020. doi: https://doi.org/10.1016/B978-0-12-821348-3.00001-X.

  53. S. Guo, C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 21(6), 433–446 (2011). https://doi.org/10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  54. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008)

    Article  CAS  Google Scholar 

  55. Z. Wang, Y. Huang, Y. Yang, J. Wang, C.T. Liu, Atomic-size effect and solid solubility of multicomponent alloys. Scr. Mater. 94, 28–31 (2015). https://doi.org/10.1016/j.scriptamat.2014.09.010

    Article  CAS  Google Scholar 

  56. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, G.M. Stocks, Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X. 5(1), 1–6 (2015). https://doi.org/10.1103/PhysRevX.5.011041

    Article  CAS  Google Scholar 

  57. D.J.M. King, S.C. Middleburgh, A.G. McGregor, M.B. Cortie, Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172–179 (2016). https://doi.org/10.1016/j.actamat.2015.11.040

    Article  CAS  Google Scholar 

  58. S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3587228

    Article  Google Scholar 

  59. S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropy in high entropy alloys: forming solid solutions or amorphous phase. Intermetallics. 41, 96–103 (2013)

    Article  Google Scholar 

  60. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132(2–3), 233–238 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  61. O.N. Senkov, D.B. Miracle, A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. 658, 603–607 (2016). https://doi.org/10.1016/j.jallcom.2015.10.279

    Article  CAS  Google Scholar 

  62. X. Jin, Y. Zhou, L. Zhang, X. Du, B. Li, A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Mater. Des. 143, 49–55 (2018). https://doi.org/10.1016/j.matdes.2018.01.057

    Article  CAS  Google Scholar 

  63. B.S. Murty, J.W. Yeh, R. Ranganathan, High-entropy Alloys, 1st edn (Butterworth-Heinemann, London, 2014)

    Google Scholar 

  64. D. Batalu, G. Coşmeleaţǎ, A. Aloman, Critical analysis of the Ti-Al phase diagrams. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 68(4), 77–90 (2006)

    CAS  Google Scholar 

  65. D. Batalu, H. Guoqiu, A. Aloman, and G. Coşmeleaţă, “A review on TiNi shape memory alloys ( SMA ) used for medical applications . Recycling aspects,” no. November, pp. 1–10, 2000.

  66. R.F. Zhang, B.X. Liu, Proposed model for calculating the standard formation enthalpy of binary transition-metal systems. Appl. Phys. Lett. 81(7), 1219–1221 (2002). https://doi.org/10.1063/1.1499510

    Article  CAS  Google Scholar 

  67. R.F. Zhang, K. Rajan, Statistically based assessment of formation enthalpy for intermetallic compounds. Chem. Phys. Lett. 612, 177–181 (2014). https://doi.org/10.1016/j.cplett.2014.08.024

    Article  CAS  Google Scholar 

  68. R.F. Zhang, S.H. Sheng, B.X. Liu, Predicting the formation enthalpies of binary intermetallic compounds. Chem. Phys. Lett. 442(4–6), 511–514 (2007). https://doi.org/10.1016/j.cplett.2007.06.031

    Article  CAS  Google Scholar 

  69. L. Zhang et al., Phase equilibria and thermal analysis in the Fe-Mn-Ni system. Int. J. Mater. Res. 100(2), 160–175 (2009). https://doi.org/10.3139/146.110002

    Article  CAS  Google Scholar 

  70. X. Chen et al., Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics. 128, 107024 (2021). https://doi.org/10.1016/j.intermet.2020.107024

    Article  CAS  Google Scholar 

  71. J. Jung, G. Ghosh, D. Isheim, G.B. Olson, Precipitation of Heusler phase (Ni2TiAl) from B2-TiNi in Ni-Ti-Al and Ni-Ti-Al-X (X = Hf, Zr) alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 34(6), 1221–1235 (2003). https://doi.org/10.1007/s11661-003-0233-7

    Article  Google Scholar 

  72. J. Nakata et al., Thermal conductivity in X2YZ Heusler type intermetallic compounds. Mater. Trans., JIM. 37, 442–447 (1996)

    Article  Google Scholar 

  73. D. Choudhuri et al., Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy. Scr. Mater. 100, 36–39 (2015). https://doi.org/10.1016/j.scriptamat.2014.12.006

    Article  CAS  Google Scholar 

  74. T. Yang et al., Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy. Scr. Mater. 164, 30–35 (2019). https://doi.org/10.1016/j.scriptamat.2019.01.034

    Article  CAS  Google Scholar 

  75. E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 188, 435–474 (2020). https://doi.org/10.1016/j.actamat.2019.12.015

    Article  CAS  Google Scholar 

  76. Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 102, 296–345 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.003

    Article  CAS  Google Scholar 

  77. S. Gorsse, M.H. Nguyen, O.N. Senkov, D.B. Miracle, Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data Br. 21, 2664–2678 (2018). https://doi.org/10.1016/j.dib.2018.11.111

    Article  CAS  Google Scholar 

  78. L. Hu, H. Peng, I. Baker, L. Li, W. Zhang, T. Ngai, Characterization of high-strength high-nitrogen austenitic stainless steel synthesized from nitrided powders by spark plasma sintering. Mater. Charact. 152, 76–84 (2019). https://doi.org/10.1016/j.matchar.2019.04.005

    Article  CAS  Google Scholar 

  79. F. Meng, I. Baker, Nitriding of a high entropy FeNiMnAlCr alloy. J. Alloys Compd. 645, 376–381 (2015). https://doi.org/10.1016/j.jallcom.2015.05.021

    Article  CAS  Google Scholar 

  80. E.J. Pavlina, C.J. Van Tyne, Correlation of Yield strength and Tensile strength with hardness for steels. J. Mater. Eng. Perform. 17(6), 888–893 (2008). https://doi.org/10.1007/s11665-008-9225-5

    Article  CAS  Google Scholar 

  81. W. Soboyejo, Mechanical Properties of Engineered Materials, 1st edn (CRC Press, Boca Raton, 2002) https://doi.org/10.1201/9780203910399

    Book  Google Scholar 

  82. V. Leskovsek, M. Kalin, J. Vizintin, Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS. Vacuum. 80, 507–518 (2006). https://doi.org/10.1016/j.vacuum.2005.08.023

    Article  CAS  Google Scholar 

  83. H.A. Murdoch, C.A. Schuh, Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J. Mater. Res. 28(16), 2154–2163 (2013). https://doi.org/10.1557/jmr.2013.211

    Article  CAS  Google Scholar 

  84. Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, Y. Liu, C.T. Liu, Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels. Acta Mater. 110, 31–43 (2016). https://doi.org/10.1016/j.actamat.2016.03.024

    Article  CAS  Google Scholar 

  85. M. Yin, P. Nash, W. Chen, S. Chen, Standard enthalpies of formation of selected Ni2YZ Heusler compounds. J. Alloys Compd. 660, 258–265 (2016). https://doi.org/10.1016/j.jallcom.2015.11.126

    Article  CAS  Google Scholar 

  86. T. Zhang, D. Wang, J. Zhu, H. Xiao, C.T. Liu, Y. Wang, Non-conventional transformation pathways and ultrafine lamellar structures in γ-TiAl alloys. Acta Mater. 189, 25–34 (2020). https://doi.org/10.1016/j.actamat.2020.02.053

    Article  CAS  Google Scholar 

  87. A. Boyne et al., Pseudospinodal mechanism for fine α/β microstructures in β-Ti alloys. Acta Mater. 64, 188–197 (2014). https://doi.org/10.1016/j.actamat.2013.10.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Karantzalis.

Ethics declarations

Conflict of interest

The authors would like to declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konakoglou, K., Mathiou, C., Georgatis, E. et al. (FeMnNi)84(AlTi)16 High-Entropy Alloy: Correlation of Microstructure, Strengthening Mechanisms and Hardness at Various Conditions (As-Cast, Solution Treated, Aged). Metallogr. Microstruct. Anal. 11, 309–326 (2022). https://doi.org/10.1007/s13632-022-00846-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00846-x

Keywords

Navigation