Skip to main content
Log in

Evolution of Microstructure and Texture in Low-Carbon Grain Non-Oriented Electrical Steels Processed from Solid-State Columnar Microstructures

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Decarburizing annealing in the two-phase (ferrite/austenite) region is a known method to provide columnar grain growth in grain non-oriented (GNO) electrical steels. This method involves a long-term preliminary annealing in vacuum and subsequent decarburizing annealing in a wet hydrogen atmosphere. Such method has been used to modify the deformation and recrystallization textures of cold-rolled and temper-rolled electrical steels to improve their magnetic behavior. In the present work, columnar microstructures were obtained, but in hot-rolled GNO electrical steels, and without using a preliminary vacuum annealing. Changes in microstructure, texture, and energy losses obtained during further processing were followed by optical microscopy, electron backscatter diffraction and magnetometry. Results show that samples subjected to modification exhibit lower energy losses than unmodified samples, which is attributed to texture improvement, carbon reduction and grain size increment caused by the solid-state columnar growth produced in hot-rolled bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Ortiz Rangel, A. Salinas Rodríguez, O. García Rincón, Effect of annealing prior to cold rolling on the microstructure evolution and energy losses of low-Si, Ultra-Low-C hot-rolled electrical steel. Metals. 10(7), 957 (2020). https://doi.org/10.3390/met1007095

    Article  Google Scholar 

  2. G. Ouyang, X. Chen, Y. Liang, J. Cui, C. Macziewski, Review of Fe-6.5 wt%Si high silicon steel—a promising soft magnetic material for sub-kHz application. Magn. Magn. Mater. 481, 234–250 (2019). https://doi.org/10.1016/j.jmmm.2019.02.089

    Article  CAS  Google Scholar 

  3. J. Salinas-Beltrán, A. Salinas-Rodríguez, E. Gutiérrez-Castañeda, R.D. Lara, Effects of processing conditions on the final microstructure and magnetic properties in non-oriented electrical steels. J. Magn. Magn. Mater. 406, 159–165 (2016). https://doi.org/10.1016/j.jmmm.2016.01.017

    Article  CAS  Google Scholar 

  4. R.K. Khatirkar, S. Nimsarkar, P. Das, A. Vishwakarma, N. Thawale, Development of recrystallization textures in 0.08%C steel. Trans. Indian Inst. Met. 63(1), 55–62 (2010). https://doi.org/10.1007/s12666-010-0008-y

    Article  CAS  Google Scholar 

  5. H. Pan, X. Li, S. Qiu, Effects of grain boundary on 100 recrystallization texture of high silicon electrical steel. Metals Mater. Int. 24(1), 221–230 (2018). https://doi.org/10.1007/s12540-017-7373-6

    Article  CAS  Google Scholar 

  6. H.H. Lee, J. Jung, J.I. Yoon, J.K. Kim, H.S. Kim, Modelling the evolution of recrystallization texture for a non-grain oriented electrical steel. Comput. Mater. Sci. 149, 57–64 (2018). https://doi.org/10.1016/j.commatsci.2018.03.013

    Article  CAS  Google Scholar 

  7. T. Tomida, (100) textured 3% silicon steel sheets by manganese removal and decarburization. J. Appl. Phys. 79, 5443–5445 (1996)

    Article  CAS  Google Scholar 

  8. M. Takashima, I. Komatsubara, N. Morito, 001 Texture development by two-stage cold rolling method in non-oriented electrical steel. ISIJ Int. 37, 1263–1268 (1997)

    Article  CAS  Google Scholar 

  9. T. Tomida, N. Sano, K. Ueda, K. Fujiwara, N. Takahashi, Cube-textured Si-steel sheets by oxide-separator-induced decarburization and growth mechanism of cube grains. J. Magn. Magn. Mater. 254, 315–317 (2003). https://doi.org/10.1016/S0304-8853(02)00810-7

    Article  Google Scholar 

  10. F. Kováč, M. Džubinský, Y. Sidor, Columnar grain growth in non-oriented electrical steels. J. Magn. Magn. Mater. 269, 333–340 (2004). https://doi.org/10.1016/S0304-8853(03)00628-0

    Article  CAS  Google Scholar 

  11. F. Kovac, V. Stoyka, I. Petryshynets, Strain-induced grain growth in non-oriented electrical steels. J. Magn. Magn. Mater. 320, 627–630 (2008). https://doi.org/10.1016/j.jmmm.2008.04.020

    Article  CAS  Google Scholar 

  12. Y. Sidor, F. Kovac, T. Kvackaj, Grain growth phenomena and heat transport in non-oriented electrical steels. Acta Mater. 55, 1711–1722 (2007). https://doi.org/10.1016/j.actamat.2006.10.032

    Article  CAS  Google Scholar 

  13. L. Kestens, S. Jacobs, Texture control during the manufacturing of nonoriented electrical steels. Text. Stress Microstruct. 2008, 1–9 (2008). https://doi.org/10.1155/2008/173083

    Article  CAS  Google Scholar 

  14. E.J. Gutiérrez Castañeda, M.G. Hernández Miranda, A. Salinas Rodríguez, J. Aguilar Carrillo, I. Reyes Domínguez, An EBSD investigation on the columnar grain growth in non-oriented electrical steels assisted by strain induced boundary migration. Mater. Lett. 252, 42–46 (2019). https://doi.org/10.1016/j.matlet.2019.05.073

    Article  CAS  Google Scholar 

  15. H. Pan, Li. Xiang, S. Qiu, Effects of grain boundary on 100 recrystallization texture of high silicon electrical steel. Met. Mater. Int. 24(1), 221–230 (2018). https://doi.org/10.1007/s12540-017-7373-6

    Article  CAS  Google Scholar 

  16. H. Shimanaka, Y. Ito, K. Matsumura, B. Fukuda, Recent development of non-oriented electrical steel sheets. J. Magn. Magn. Mater. 26, 57–64 (1982)

    Article  CAS  Google Scholar 

  17. H. Yashiki, T. Kaneko, Effect of hot-band annealing on anisotropy of magnetic properties in low-Si semi-processed electrical steels. J. Mag. Mag. Mater. 112, 200–202 (1992). https://doi.org/10.1016/0304-8853(92)91152-J

    Article  CAS  Google Scholar 

  18. H.O.U. Chun-Kan, Effect of hot band annealing temperature of low-carbon electrical steels on the magnetic properties. ISIJ Int. 36(5), 563–571 (1996)

    Article  Google Scholar 

  19. A.E. Cheglova, A.K. Pogodaeva, V.S. Yusupovb, S.V. Bakhtinc, D.V. Barybinc, A.S. Bakhtina, Influence of normalization on the magnetic properties of electrical steel with superlow magnetic losses. Steel Transl. 46(7), 520–524 (2016). https://doi.org/10.3103/S0967091216070056

    Article  Google Scholar 

  20. E.J. Gutiérrez Castañeda, C.N. Palafox Cantú, A.A. Torres Castillo, A. Salinas Rodríguez, R. Deaquino Lara, F. Botello Rionda, F. Marquez Torres, S. García Guillermo, Columnar grain growth during annealing prior to cold rolling of non-oriented electrical steels. Mater. Sci. Eng. B. 243, 8–18 (2019). https://doi.org/10.1016/j.mseb.2019.03.016

    Article  CAS  Google Scholar 

  21. ASTM E415-17, Standard Test Method for Analysis of Carbon and Low-Alloy Steel by Spark Atomic Emission Spectrometry, 2017.

  22. ASTM E1019-16, Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques, 2016.

  23. C. Wagner, W. Jost, in Diffusion in Solids, Liquids and Gases, (Academic Press, New York, NY, 1960)

  24. ASTM A343/A343M—14, Standard Test Method for Alternating-Current Magnetic Properties of Materials at Power Frequencies Using Wattmeter-Ammeter-Voltmeter Method and 25-cm Epstein Test Frame, 2019.

  25. A. Haldar, S. Suwas, D. Bhattacharjee (eds.), Microstructure and Texture in Steels: and Other Materials. (Springer, India, 2009)

    Google Scholar 

  26. S. Wright, M. Nowell, D. Field, A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 17(3), 316–329 (2011). https://doi.org/10.1017/S1431927611000055

    Article  CAS  Google Scholar 

  27. L. Saraf, Kernel average misorientation confidence index correlation from FIB sliced NiFe-Cr alloy surface. Microsc. Microanal. 17(Suppl 2), 424–425 (2011). https://doi.org/10.1017/S1431927611002996

    Article  Google Scholar 

  28. M. Ji, C. Slater, C. Davis, Thermomechanical processing map in retaining {100}//ND texture via strain-induced boundary migration recrystallization mechanism. Metall. Mater. Trans. A. 51, 6498–6504 (2020). https://doi.org/10.1007/s11661-020-06047-x

    Article  CAS  Google Scholar 

  29. A. Sonboli, M.R. Toroghinejad, H. Edris, J.A. Szpunar, Effect of deformation route and intermediate annealing on magnetic anisotropy and magnetic properties of a 1 wt% Si non-oriented electrical steel. J. Magn. Magn. Mater. 385, 331–338 (2015). https://doi.org/10.1016/j.jmmm.2015.03.026

    Article  CAS  Google Scholar 

  30. I.L. Dillamore, P.L. Morris, C.J.E. Smith, W.B. Hutchinson, Transition bands and recrystallization in metals. Proc. Royal Soc. London A Math. Phys. Sci. 329, 405–420 (1972)

    CAS  Google Scholar 

  31. P. Beckley, Electrical Steels for Rotating Machines (The Institution of Engineering and Technology, London, 2012)

    Google Scholar 

Download references

Acknowledgements

E. Gutiérrez would like to thank CONACYT for the Catedra assigned at The Institute of Metallurgy (IM-UASLP). The technical assistance of Rosa Lina Tovar, Claudia Hernández, Nubia Larios, Izanami López (IM-UASLP), Francisco Botello and Felipe Márquez (CINVESTAV) is also recognized. The financial support from the Autonomous University of San Luis Potosi (CIDET-UASLP, No. C19-FRC-08-10.10) is duly recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Gutiérrez-Castañeda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Miranda, M., Gutiérrez-Castañeda, E., Palomares-Sánchez, S. et al. Evolution of Microstructure and Texture in Low-Carbon Grain Non-Oriented Electrical Steels Processed from Solid-State Columnar Microstructures. Metallogr. Microstruct. Anal. 10, 876–889 (2021). https://doi.org/10.1007/s13632-021-00812-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00812-z

Keywords

Navigation