Skip to main content
Log in

Effect of Interlamellar Spacing on the Low Cycle Fatigue Behavior of a Fully Pearlitic Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The present study aims at investigating the low cycle fatigue behavior of two fully AISI 1080 pearlitic steels which differed in their interlamellar spacing (72 ± 15 and 143 ± 32 nm). Low cycle fatigue tests were performed under positive strain control at different total strain variations (0.6% ≤ ∆εt ≤ 1.6%). It is shown that both alloys presented an asymmetric stress response and a cyclic softening during the first fatigue life fractions. The tension stress peaks were higher for the fine pearlitic steel than for the coarse one but the compression stress peaks were less different. The extrusion–intrusion pairs formed at the external surface were more developed for the coarse pearlitic steel. The results suggest that the critical short crack size to propagate in the bulk is much smaller in the fine pearlitic steel which explains the shorter fatigue lives. For both steels, the entire fracture surface comprised a fatigue propagation zone, a final fully brittle zone separated by a narrow ductile transition zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Abbreviations

ILS:

Interlamellar spacing

CP:

Coarse pearlite

FP:

Fine pearlite

LCF:

Low cycle fatigue

∆ε t (%):

Total strain range

∆ε p (%):

Plastic strain range

References

  1. Millau viaduct https://structurae.net/en/structures/millau-viaduct

  2. O.P. Modi, N. Desmukh, D.P. Mondal, A.K. Jha, A.H. Yegneswaran, H.K. Khaira, Effect of interlamellar spacing on the mechanical properties of 0.65% C steel. Mater. Charact. (2001). https://doi.org/10.1016/S1044-5803(00)00113-3

    Article  Google Scholar 

  3. C.M. Bae, C.S. Lee, W.J. Nam, Effect of carbon content on mechanical properties of fully pearlitic steels. Mater. Sci. Technol. (2002). https://doi.org/10.1179/026708302225007556

    Article  Google Scholar 

  4. J. Toribio, B. González, J.-C. Matos, F.J. Ayaso, Influence of microstructure on strength and ductility in fully pearlitic steels. Metals. (2016). https://doi.org/10.3390/met6120318

    Article  Google Scholar 

  5. C.-L. Zhang, X. Liu, L.-Y. Zhou, Y.-Z. Liu, Influence of pearlite interlamellar spacing on strain hardening behaviour in spring steel 60Si2MnA. Proc. Eng. (2014). https://doi.org/10.1016/j.proeng.2014.10.111

    Article  Google Scholar 

  6. V.N. Khiratkar, K. Mishra, P. Srinivasulu, A. Singh, Effect of inter-lamellar spacing and test temperature on the Charpy impact energy of extremely fine pearlite. Mater. Sci. Eng. A. (2019). https://doi.org/10.1016/j.msea.2019.03.121

    Article  Google Scholar 

  7. F. Zhang, Y. Zhao, Y. Tan, X. Ji, S. Xiang, Study on the nucleation and growth of pearlite colony and impact toughness of eutectoid steel. Metals. (2019). https://doi.org/10.3390/met9111133

    Article  Google Scholar 

  8. F.P.L. Kavishe, T.J. Baker, Effect of prior austenite grain size and pearlite interlamellar spacing on strength and fracture toughness of a eutectoid rail steel. Mater. Sci. Technol. (1986). https://doi.org/10.1179/mst.1986.2.8.816

    Article  Google Scholar 

  9. J. Toribio, B. González, J.-C. Matos, Analysis of fatigue crack paths in cold drawn pearlitic steel. Materials. (2015). https://doi.org/10.3390/ma8115388

    Article  Google Scholar 

  10. L.B. Godefroid, L.P. Moreira, T.C.G. Vilela, G.L. Faria, L.C. Candido, E.S. Pinto, Effect of chemical composition and microstructure on the fatigue crack growth resistance of pearlitic steels for railroad application. Int. J. Fatigue. (2019). https://doi.org/10.1016/j.ijfatigue.2018.10.016

    Article  Google Scholar 

  11. S. Maya-Johnson, A.J. Ramirez, A. Toro, Fatigue crack growth rate of two pearlitic rail steels. Eng. Fract. Mech. (2015). https://doi.org/10.1016/j.engfracmech.2015.03.023

    Article  Google Scholar 

  12. G.F. Vander Voort, A. Roósz, Measurement of the interlamellar spacing of pearlite. Metallography. 17(1), 1–17 (1984)

    Article  CAS  Google Scholar 

  13. S.S. Manson, Fatigue: a complex subject—some simple approximations. Exp. Mech. (1965). https://doi.org/10.1007/bf02321056

    Article  Google Scholar 

  14. R.E. Stoltz, R.M. Pelloux, The Bauschinger effect in precipitation strengthened aluminium alloys. Metall. Mater. Trans. (1976). https://doi.org/10.1007/BF02658814

    Article  Google Scholar 

  15. L.E. Levine, M.R. Stoudt, A. Creuziger, T.Q. Phan, R. Xu, M.E. Kassner, Basis for the Bauschinger effect in copper single crystals: changes in the long-range internal stress with reverse deformation. J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-018-03295-6

    Article  Google Scholar 

  16. J. Toribio, V. Kharin, F.-J. Ayaso, M. Lorenzo, B. González, J.-C. Matos, L. Aguado, Analysis of the Bauschinger effect in cold drawn Pearlitic steels. Metals. (2020). https://doi.org/10.3390/met10010114

    Article  Google Scholar 

  17. M. Bönisch, M. Seefeldt, A. Van Bael, N. Sanchez, S. Cooreman, Towards a dislocation-based model for strain path effects in bainitic pipeline steels, in Paper presented at ESAFORM 2021. 24th International Conference on Material Forming, Liège, Belgique (2021) https://doi.org/10.25518/esaform21.2403

  18. J.-B. Vogt, I.M.O.A. Costa, A. Addad, J. Bouquerel, Fatigue intrusion-extrusion in a fully pearlitic steel. Mater. Lett. (2020). https://doi.org/10.1016/j.matlet.2020.127539

    Article  Google Scholar 

  19. C. Schayes, J.-B. Vogt, J. Bouquerel, F. Palleschi, S. Zaefferer, Cyclic plasticity mechanism of the M330-35A steel. Int. J. Fatigue. (2016). https://doi.org/10.1016/j.ijfatigue.2015.09.008

    Article  Google Scholar 

Download references

Acknowledgements

The SEM and TEM national facility in Lille (France) is supported by the Conseil Regional des Hauts-de-France and the European Regional Development Fund (ERDF). The authors thank Mr. Damien Creton and Mr. Jocelyn Golek for their help in the fatigue and metallography experiments. One the authors (D.B.) acknowledges the European Union and Centrale Lille Institut for supporting her intern at UMET inside the Erasmus agreement between Centrale Lille Institut (France) and Lviv Polytechnical National University (Ukraine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Bernard Vogt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila de Oliveira Silva, L., Adinolfi Colpaert Sartori, G., Bondarchuk, D. et al. Effect of Interlamellar Spacing on the Low Cycle Fatigue Behavior of a Fully Pearlitic Steel. Metallogr. Microstruct. Anal. 10, 692–699 (2021). https://doi.org/10.1007/s13632-021-00775-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00775-1

Keywords

Navigation