Skip to main content

Advertisement

Log in

Effect of Welding Parameters and Artificial Aging on Mechanical Properties of Friction Stir Welded AA 7004 Alloys: Experimental and Artificial Neural Network Simulation

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this work, for the first-time effect of friction stir welding parameters (rotational and travel speeds) and artificial aging on mechanical properties of AA 7004 alloy is studied both experimentally and mathematically using artificial neural network. Microstructure, microhardness, yield and ultimate tensile strength of as welded and aged samples were evaluated. Artificial neural network model was used to predict the experimental results. The maximum strength of 341 MPa and joint efficiency of 80% was observed at 320 rpm and 1 mm/sec travel speed. Aging of as welded samples at 150 °C for 24 h resulted in increase in joint efficiency from 59 to 80% due to re-precipitation of precipitates in the weld zone. The samples welded at higher rotational and lower travel speeds show poor strength. This might be due to particle and grain coarsening. Outcome of the artificial neural network model results was found to be in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.M. Bayazid, H. Farhangi, H. Asgharzadeh, L. Radan, A. Ghahramani, A. Mirhaji, Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy. Mater. Sci. Eng. A. 649, 293–300 (2016). https://doi.org/10.1016/j.msea.2015.10.010

    Article  CAS  Google Scholar 

  2. J. R. Davis, Aluminium and aluminium alloys from. In: J. R. Davis (ed.) Alloying Understanding the Basics pp. 351-416. ASM international, Ohio (2001).

  3. A. Azarniya, A.K. Taheri, K.K. Taheri, Recent advances in aging of 7xxx series aluminum alloys: A physical metallurgy perspective. J Alloys Compd. 2019, 945–983 (2019). https://doi.org/10.1016/j.jallcom.2018.11.286

    Article  CAS  Google Scholar 

  4. P. Carlone, G.S. Palazzo, Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metallogr. Microstruct. Anal. 2, 213–222 (2013). https://doi.org/10.1007/s13632-013-0078-4

    Article  CAS  Google Scholar 

  5. K. Singh, G. Singh, H. Singh, Review on friction stir welding of magnesium alloys. J. Magnes Alloys. 6, 399–416 (2018). https://doi.org/10.1016/j.jma.2018.06.001

    Article  CAS  Google Scholar 

  6. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862–871 (2014). https://doi.org/10.1016/j.matdes.2013.12.002

    Article  CAS  Google Scholar 

  7. P.A. Rometsch, Y. Zhang, S. Knight, Heat treatment of 7xxx series aluminium alloys - Some recent developments. Trans. Nonferr. Met. Soc. China (Engl. Ed.). 24, 2003–2017 (2014). https://doi.org/10.1016/S1003-6326(14)63306-9

    Article  CAS  Google Scholar 

  8. M. Kang, C. Kim, A review of joining processes for high strength 7xxx series aluminum alloys. J. Weld. Join. 35, 79–88 (2017). https://doi.org/10.5781/jwj.2017.35.6.12

    Article  Google Scholar 

  9. A.K. Lakshminarayanan, V. Balasubramanian, K. Elangovan, Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. Int. J. Adv. Manuf. Technol. 40, 286–296 (2009). https://doi.org/10.1007/s00170-007-1325-0

    Article  Google Scholar 

  10. V. Balasubramanian, V. Ravisankar, R.G. Madhusudhan, Influences of pulsed current welding and post weld aging treatment on fatigue crack growth behaviour of AA7075 aluminium alloy joints. Int. J. Fatigue. 30, 405–416 (2008). https://doi.org/10.1016/j.ijfatigue.2007.04.012

    Article  CAS  Google Scholar 

  11. V. Saravanan, S. Rajakumar, A. Muruganandam, Effect of friction stir welding process parameters on microstructure and mechanical properties of dissimilar AA6061-T6 and AA7075-T6 aluminum alloy joints. Metallogr. Microstruct. Anal. 5, 476–485 (2016). https://doi.org/10.1007/s13632-016-0315-8

    Article  CAS  Google Scholar 

  12. C. Sharma, D.K. Dwivedi, P. Kumar, Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy. Mater. Des. 36, 379–390 (2012). https://doi.org/10.1016/j.matdes.2011.10.054

    Article  CAS  Google Scholar 

  13. W.F. Xu, Y.X. Luo, M.W. Fu, Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085–T7452 aluminum alloy. Mater. Charact. 138, 48–55 (2018). https://doi.org/10.1016/j.matchar.2018.01.051

    Article  CAS  Google Scholar 

  14. P. Mastanaiah, A. Sharma, G.M. Reddy, Role of hybrid tool pin profile on enhancing welding speed and mechanical properties of AA2219-T6 friction stir welds. J. Mater. Process. Technol. 257, 257–269 (2018). https://doi.org/10.1016/j.jmatprotec.2018.03.002

    Article  CAS  Google Scholar 

  15. R. Rouzbehani, A.H. Kokabi, H. Sabet, M. Paidar, O.O. Ojo, Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy. J. Mater. Process. Technol. 262, 239–256 (2018). https://doi.org/10.1016/j.jmatprotec.2018.06.033

    Article  CAS  Google Scholar 

  16. B. Bagheri, M. Abbasi, M. Dadaei, Effect of water cooling and vibration on the performances of friction-stir-welded AA5083 aluminum joints. Metallogr. Microstruct. Anal. 9, 33–46 (2020). https://doi.org/10.1007/s13632-019-00606-4

    Article  CAS  Google Scholar 

  17. Y. Mao, L. Ke, Y. Chen, F. Liu, L. Xing, Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints. J. Mater. Sci. Technol. 34, 228–236 (2018). https://doi.org/10.1016/j.jmst.2017.11.039

    Article  Google Scholar 

  18. X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang et al., Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions. J. Mater. Sci. Technol. 35, 972–981 (2019). https://doi.org/10.1016/j.jmst.2018.12.024

    Article  Google Scholar 

  19. N. Pol, G. Verma, R.P. Pandey, T. Shanmugasundaram, Fabrication of AA7005/TiB2-B4C surface composite by friction stir processing: Evaluation of ballistic behaviour. Def. Technol. 15, 363–368 (2019). https://doi.org/10.1016/j.dt.2018.08.002

    Article  Google Scholar 

  20. Y.Z. Li, Y.N. Zan, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, Effect of welding speed and post-weld aging on the microstructure and mechanical properties of friction stir welded B4Cp/6061Al-T6 composites. J. Mater. Process. Technol. 2019, 273 (2019). https://doi.org/10.1016/j.jmatprotec.2019.05.023

    Article  CAS  Google Scholar 

  21. M.I. Costa, C. Leitão, D.M. Rodrigues, Influence of post-welding heat-treatment on the monotonic and fatigue strength of 6082–T6 friction stir lap welds. J. Mater. Process. Technol. 250, 289–296 (2017). https://doi.org/10.1016/j.jmatprotec.2017.07.030

    Article  CAS  Google Scholar 

  22. R. Vaira Vignesh, R. Padmanaban, Artificial neural network model for predicting the tensile strength of friction stir welded aluminium alloy AA1100. Mater. Today Proc. 5, 16716–16723 (2018). https://doi.org/10.1016/j.matpr.2018.06.035

    Article  CAS  Google Scholar 

  23. K.G. Sheela, S.N. Deepa, Selection of number of hidden neurons in neural networks in renewable energy systems. J. Sci. Ind. Res. (India). 73, 686–688 (2014)

    Google Scholar 

  24. S. Ajith Arul Daniel, R. Pugazhenthi, R. Kumar, S. Vijayananth, Multi objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi-grey relational analysis. Def. Technol. 15, 545–556 (2019). https://doi.org/10.1016/j.dt.2019.01.001

    Article  Google Scholar 

  25. N.D. Ghetiya, K.M. Patel, Prediction of tensile strength in friction stir welded aluminium alloy using artificial neural network. Procedia Technol. 14, 274–281 (2014). https://doi.org/10.1016/j.protcy.2014.08.036

    Article  Google Scholar 

  26. H. Okuyucu, A. Kurt, E. Arcaklioglu, Artificial neural network application to the friction stir welding of aluminum plates. Mater. Des. 28, 78–84 (2007). https://doi.org/10.1016/j.matdes.2005.06.003

    Article  CAS  Google Scholar 

  27. M.H. Shojaeefard, R.A. Behnagh, M. Akbari, M.K.B. Givi, F. Farhani, Modelling and pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Mater. Des. 44, 190–198 (2013). https://doi.org/10.1016/j.matdes.2012.07.025

    Article  CAS  Google Scholar 

  28. M. Imam, Y. Sun, H. Fujii, M.A. Ninshu, S. Tsutsumi, S. Ahmed et al., Deformation characteristics and microstructural evolution in friction stir welding of thick 5083 aluminum alloy. Int. J. Adv. Manuf. Technol. 99, 663–681 (2018). https://doi.org/10.1007/s00170-018-2521-9

    Article  Google Scholar 

  29. K.V. Jata, Friction stir welding of high strength aluminum alloys. Mater. Sci. Forum. 331, 743–749 (2000). https://doi.org/10.1016/S1359-6462(00)00480-2

    Article  Google Scholar 

  30. K. Kumar, S.V. Kailas, On the role of axial load and the effect of interface position on the tensile strength of a friction stir welded aluminium alloy. Mater. Des. 29, 791–797 (2008). https://doi.org/10.1016/j.matdes.2007.01.012

    Article  CAS  Google Scholar 

  31. C. Zhang, G. Huang, Y. Cao, Y. Zhu, Q. Liu, On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: effect of rotational speed. J. Manuf. Process. 37, 470–487 (2019). https://doi.org/10.1016/j.jmapro.2018.12.014

    Article  Google Scholar 

  32. H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding. Model. Simul. Mater. Sci. Eng. 12, 143–157 (2004). https://doi.org/10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  33. H. Das, S.S. Jana, T.K. Pal, A. De, Numerical and experimental investigation on friction stir lap welding of aluminium to steel. Sci. Technol. Weld. Join. 19, 69–75 (2014). https://doi.org/10.1179/1362171813Y.0000000166

    Article  CAS  Google Scholar 

  34. M.M.Z. Ahmed, S. Ataya, M.M. El-Sayed Seleman, H.R. Ammar, E. Ahmed, Friction stir welding of similar and dissimilar AA7075 and AA5083. J. Mater. Process. Technol. 242, 77–91 (2017). https://doi.org/10.1016/j.jmatprotec.2016.11.024

    Article  CAS  Google Scholar 

  35. H. Lin, Y. Wu, S. Liu, Impact of initial temper of base metal on microstructure and mechanical properties of friction stir welded AA 7055 alloy. Mater. Charact. 146, 159–168 (2018). https://doi.org/10.1016/j.matchar.2018.09.043

    Article  CAS  Google Scholar 

  36. F. Zhang, X. Su, Z. Chen, Z. Nie, Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al-Zn-Mg-Cu aluminum alloy. Mater. Des. 67, 483–491 (2015). https://doi.org/10.1016/j.matdes.2014.10.055

    Article  CAS  Google Scholar 

  37. P.V. Kumar, G.M. Reddy, K.S. Rao, Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds – Effect of post weld heat treatment. Def. Technol. 11, 362–369 (2015). https://doi.org/10.1016/j.dt.2015.04.003

    Article  Google Scholar 

  38. A. Sullivan, J.D. Robson, Microstructural properties of friction stir welded and post-weld heat-treated 7449 aluminium alloy thick plate. Mater. Sci. Eng. A. 478, 351–360 (2008). https://doi.org/10.1016/j.msea.2007.06.025

    Article  CAS  Google Scholar 

  39. P. Sivaraj, D. Kanagarajan, V. Balasubramanian, Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy. Def. Technol. 10, 1–8 (2014). https://doi.org/10.1016/j.dt.2014.01.004

    Article  CAS  Google Scholar 

  40. C. Sharma, D.K. Dwivedi, P. Kumar, Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al-Zn-Mg alloy AA7039. Mater. Des. 43, 134–143 (2013). https://doi.org/10.1016/j.matdes.2012.06.018

    Article  CAS  Google Scholar 

  41. K. Kamal Babu, K. Panneerselvam, P. Sathiya, A. Noorul Haq, S. Sundarrajan, P. Mastanaiah et al., Parameter optimization of friction stir welding of cryorolled AA2219 alloy using artificial neural network modeling with genetic algorithm. Int. J. Adv. Manuf. Technol. 94, 3117–3129 (2018). https://doi.org/10.1007/s00170-017-0897-6

    Article  Google Scholar 

  42. A. Kumar, M.K. Khurana, G. Singh, Modeling and optimization of friction stir welding process parameters for dissimilar aluminium alloys. Mater Today Proc. 5, 25440–25449 (2018). https://doi.org/10.1016/j.matpr.2018.10.349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Defence Institute of Advanced Technology (DIAT), Pune for providing funding for this research work (No: DIAT/F/Adm/Project/OM/Mate/Corr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shanmugasundaram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Kotteswaran, B. & Shanmugasundaram, T. Effect of Welding Parameters and Artificial Aging on Mechanical Properties of Friction Stir Welded AA 7004 Alloys: Experimental and Artificial Neural Network Simulation. Metallogr. Microstruct. Anal. 10, 515–524 (2021). https://doi.org/10.1007/s13632-021-00759-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00759-1

Keywords

Navigation