Skip to main content
Log in

Development of an Oxidation Method for Prior Austenite Grain Boundary Revelation

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The prior austenite grain size is a very important quantitative parameter which has a great influence on steel final microstructure and properties. Therefore, its measurement is a useful metallographic tool. To measure the austenitic grain size, it is necessary to reveal the prior austenitic grain boundaries by applying contrast methods. The technical literature reports many limitations to achieve satisfactory results using known methods that are, generally, susceptible to steel chemical composition and processing routes. In this context, this study proposed an oxidation method to reveal the prior austenite grain boundaries in different steel grades. This method was evaluated in the samples of AISI 4340 and AISI 1030 steels. Aiming to confirm the proposed technique efficiency, a parallel and classical method, based on picric acid etching, was applied to same steels. In the suggested oxidation method, the samples were mechanically ground, polished, and then austenitized in an argon atmosphere with low oxygen partial pressure. The obtained results confirm the success of the proposed method for both studied steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Li, X. Ma, S.V. Subramanian, C. Shang, R.D.K. Misra, Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel. Mater. Sci. Eng. A 616, 141–147 (2014)

    Article  CAS  Google Scholar 

  2. J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee, B. Hwang, The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater. 122, 199–206 (2017)

    Article  CAS  Google Scholar 

  3. H. Zhao, B.P. Wynne, E.J. Palmiere, Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling. Mater. Charact. 123, 128–136 (2017)

    Article  CAS  Google Scholar 

  4. B. Ravi Kumar, N.K. Patel, K. Mukherje, M. Walunj, G.K. Mandal, T. Venugopalan, Ferrite channel effect on ductility and strain hardenability of ultra high strength dual phase steel. Mater. Sci. Eng. A 685, 187–193 (2017)

    Article  CAS  Google Scholar 

  5. X. Li, P. Wu, R. Yang, S. Zhao, S. Chen, X. Cao, X. Wang, Nb segregation at prior austenite grain boundaries and defects in high strength low alloy steel during cooling. Mater. Des. 115, 165–169 (2017)

    Article  CAS  Google Scholar 

  6. S.-J. Lee, Y.-K. Lee, Prediction of austenite grain growth during austenitization of low alloy steels. Mater. Des. 29(9), 1840–1844 (2008)

    Article  CAS  Google Scholar 

  7. V. Sinha, E.J. Payton, M. Gonzales et al., Delineation of prior austenite grain boundaries in a low-alloy high-performance steel. Metallogr. Microstruct. Anal. 6, 610–618 (2017). https://doi.org/10.1007/s13632-017-0403-4

    Article  CAS  Google Scholar 

  8. K.S. Cho, H.S. Sim, J.H. Kim, J.H. Choi, K.B. Lee, H.R. Yang, H. Kwon, A novel etchant for revealing the prior austenite grain boundaries and matrix information in high alloy steels. Mater. Charact. 59(6), 786–793 (2008)

    Article  CAS  Google Scholar 

  9. D. San Martin, Y. Palyzdar, R.C. Cochrane, R.M.D. Brydson, A.J. Scott, Application of Nomarski interference contrast microscopy to highlight the prior austenite grain boundaries revealed by thermal etching. Mater. Charact. 61(5), 584–588 (2010)

    Article  CAS  Google Scholar 

  10. C. García de Andrés, M.J. Bartolome, C. Capdevila, D. San Martin, F.G. Caballero, V.H. López, Metallographic technics for the determination of the austenite grain size in medium-carbon microalloyed steels. Mater. Charact. 46(5), 389–398 (2001)

    Article  Google Scholar 

  11. D. San Martin, P.E.J.R.D. del Castillo, E. Peekstok, S. van der Zwaag, A new etching route for revealing the austenite grain boundaries in an 11.4% Cr precipitation hardening semi-austenitic stainless steel. Mater. Charact. 58(5), 455–460 (2007)

    Article  CAS  Google Scholar 

  12. J. Reiter, C. Bernhard, H. Presslinger, Austenite grain size in continuous casting process: metallographic methods and evaluation. Mater. Charact. 59(6), 737–746 (2008)

    Article  CAS  Google Scholar 

  13. A.W. Brewer, K.A. Erven, G. Krauss, Etching and image analysis of prior austenite grain boundaries in hardened steels. Mater. Charact. 27(1), 53–56 (1991)

    Article  CAS  Google Scholar 

  14. W.-D. Cao, X.-P. Lu, A SEM (scanning electron microscopy)-based method to evaluate impurity segregation to prior austenite grain boundaries in high strength steels. J. Mater. Sci. 24(4), 1368–1372 (1988)

    Article  Google Scholar 

  15. S. Vazehrad, J. Elfsberg, A. Diószegi, Study of microstructure and silicon segregation in cast iron using color etching and electron microprobe analysis. Mater. Charact. 104, 132–138 (2015)

    Article  CAS  Google Scholar 

  16. Q.-Y. Sha, G.-J. Huang, J. Guan, X.-J. Ma, D.-H. Li, A new route for identification of precipitates on Austenite grain boundary in an Nb-V-Ti microalloyed steel. J. Iron. Steel Res. Int. 18(8), 53–57 (2011)

    Article  CAS  Google Scholar 

  17. M. Nasim, B.C. Edwards, E.A. Wilson, A study of grain boundary embrittlement in an Fe-8%Mn alloy. Mater. Sci. Eng. A 281(1–2), 56–67 (2000)

    Article  Google Scholar 

  18. Y.J. Li, D. Ponge, P. Choi, D. Raabe, Segregation of boron at prior austenite grain boundaries in an quenched martensitic steel studied by atom probe tomography. Scr. Mater. 96, 13–16 (2015)

    Article  CAS  Google Scholar 

  19. M.-W. Lui, I. Le May, Etching of prior austenite grain boundaries in AISI 4140 steel. Metallography 4(5), 443–450 (1971)

    Article  CAS  Google Scholar 

  20. D.R. Barraclough, Etching of prior austenite grain boundaries in martensite. Metallography 6(6), 465–472 (1973)

    Article  CAS  Google Scholar 

  21. A. Brownrigg, P. Curcio, R. Boelen, Etching of prior austenite grain boundaries in martensite. Metallography 8(6), 529–533 (1975)

    Article  CAS  Google Scholar 

  22. C. García de Andrés, F.G. Caballero, C. Capdevila, D. San Martin, Revealing austenite grain boundaries by thermal etching: advantages and disadvantages. Mater. Charact. 49(2), 121–127 (2002)

    Article  Google Scholar 

  23. T.V. Soshima, A.A. Zisman, E.I. Khlusova, Revelation of former austenite grains by thermal etching in a vacuum with low-carbon steel TMT steel. Metallurgist 57(1–2), 128–136 (2013)

    Article  Google Scholar 

  24. Y. Palizdar, D. San Martin, M. Ward, R.C. Cochrane, R. Brydson, A.J. Scott, Observation of thermally etched grain boundaries with the FIB/TEM technique. Mater. Charact. 84, 28–33 (2013)

    Article  CAS  Google Scholar 

  25. N.S. Lim, C.W. Bang, S. Das et al., Influence of tempering temperature on both the microstructural evolution and elemental distribution in AISI 4340 steels. Met. Mater. Int. 18, 87–94 (2012). https://doi.org/10.1007/s12540-012-0011-4

    Article  CAS  Google Scholar 

  26. F. Josefsson, Development of a quantitative method for grain size measurement using EBSD. Master of Science Thesis, Available from Royal Institute of Technology Library, Stockholm. Thesis completed (2012)

  27. ASTM: E1382–97, Standard test methods for determining average grain size using semiautomatic and automatic image analysis (ASTM International, West Conshohocken, 2015), p. 2015

    Google Scholar 

  28. Y.N. Gornostyrev, V.N. Urtsev, M.K. Zalalutdinov, P. Entel, A.V. Kaptsan, A.R. Kuznetsov, Reconstruction of grain boundaries during austenite-ferrite transformation. Scr. Mater. 53, 153–158 (2005)

    Article  CAS  Google Scholar 

  29. X.-Y. Liu, J. Kameda, J.W. Anderegg, S. Takasi, K. Abiko, C.J. McMahon Jr., Hydrogen-induced cracking in a very-high-purity high strength steel. Mater. Sci. Eng. A 492(1–2), 218–220 (2008)

    Article  Google Scholar 

  30. P.J. Felfer, C.R. Killmore, J.G. Willians, K.R. Carpenter, S.P. Ringer, J.M. Cairney, A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel. Acta Mater. 60(13–14), 5049–5055 (2012)

    Article  CAS  Google Scholar 

  31. S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, D.K. Schreiber, Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water. Corros. Sci. 131, 310–323 (2018)

    Article  CAS  Google Scholar 

  32. Y. Fushiwake, Y. Nagataki, H. Nagano, W. Tanimoto, Y. Sugimoto, Influence of Fe oxidation on selective oxidation behavior of Si and Mn added in high strength sheet steel. ISIJ Int. 54(3), 664–670 (2014)

    Article  Google Scholar 

  33. S. Taniguchi, K. Yamamoto, D. Megumi, T. Shibata, Characteristics of scale/substrate interface area of Si-containing low-carbon steels at high temperatures. Mater. Sci. Eng. A 308(1–2), 250–257 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldo Faria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, G., Cardoso, R. & Moreira, P. Development of an Oxidation Method for Prior Austenite Grain Boundary Revelation. Metallogr. Microstruct. Anal. 7, 533–541 (2018). https://doi.org/10.1007/s13632-018-0470-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-018-0470-1

Keywords

Navigation