Skip to main content

Advertisement

Log in

In vitro antibacterial activity of Hibiscus rosa sinensis, Chrysanthemum indicum, and Calendula officinalis flower extracts against Gram negative and Gram positive food poisoning bacteria

  • Research Article
  • Published:
Advances in Traditional Medicine Aims and scope Submit manuscript

Abstract

Safely management of food spoilage and foodborne illness is primarily achieved by applying chemical additives that have adverse effects along with health risk, increment chemical in food, and reduced bacterial susceptibility to antimicrobials. In the present study, antimicrobial efficacy of extracts from 3 different flowers (Hibiscus rosa sinensis, Chrysanthemum indicum, and Calendula officinalis) was examined towards seven food poisoning bacterial strains, four gram-positive strains (Staphylococcus aureus MTCC 87, Bacillus cereus MTCC 430, Clostridium perfringens MTCC 450, Listeria monocytogenes MTCC 657), and three gram-negative strains (Escherichia coli MTCC 43, Salmonella typhi MTCC 1264 and Pseudomonas aeruginosa MTCC424) using well diffusion assay. Aqueous extracts from all three of the flowers were similarly efficient with variable antimicrobial efficiency against the examined bacterial strains, while ethanol and methanol extracts from C. officinalis were highly efficient against all tested pathogenic bacteria. Ethanolic extract of C. indicum was the most efficient flower extract after C. officinalis against C. perfringens, L. monocytogenes, and S. typhi. H. rosa sinensis ethanol extract exhibited bactericidal action against S. aureus, B. cereus, and P. aeruginosa. For most extracts, the minimum inhibitory concentration (MIC) ranged from 3.75 to 7.5% and minimum bactericidal concentration (MBC) of 1.87–3.75% except for C. perfringens, and L. monocytogenes those were less sensitive with MIC 20%, and MBC 20%. Such flower extracts, which are potentially efficient, would be utilized to manage foodborne illness and protect food items from spoilage and minimize safety hazards generated due to chemically preservatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abudunia AM, Marmouzi I, Faouzi ME, Ramli Y, Taoufik J, El Madani N, Essassi EM, Salama A, Khedid K, Ansar M, Ibrahimi A (2017) Anticandidal, antibacterial, cytotoxic and antioxidant activities of Calendula arvensis flowers. J Mycol Med 27(1):90–97

    Article  PubMed  Google Scholar 

  • AftabUddin S, Siddique MAM, Romkey SS, Shelton WL (2017) Antibacterial function of herbal extracts on growth, survival and immunoprotection in the black tiger shrimp Penaeus monodon. Fish Shellfish Immunol 65:52–58

    Article  PubMed  Google Scholar 

  • Al-Qurainy F, Gaafar ARZ, Khan S, Nadeem M, Tarroum M, Alaklabi A, Thomas J (2013) Antibacterial activity of leaf extract of Breonadia salicina (Rubiaceae), an endangered medicinal plant of Saudi Arabia. Genet Mol Res 12(3):3212–3219

    Article  CAS  PubMed  Google Scholar 

  • Al-Qurainy F, Alshameri A, Gaafar AR, Khan S, Nadeem M, Alameri AA, Tarroum M, Ashraf M (2019) Comprehensive stress-based de novo transcriptome assembly and annotation of Guar (Cyamopsis tetragonoloba (L.) Taub.): an important industrial and forage crop. Int J Genom 2019:7295859

    Google Scholar 

  • Anushree B, Fawaz MA, Narahari R, Shahela T, Syed A (2015) Comparison of antimicrobial efficacy of triclosan—containing, herbal and homeopathy toothpastes—an invitro study. J Clin Diagn Res 9(10):DC05–DC08

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arullappan S, Zakaria Z, Basri DF (2009) Preliminary Screening of Antibacterial Activity Using Crude Extracts of Hibiscus rosa sinensis. Trop Life Sci Res 20(2):109–118

    PubMed  PubMed Central  Google Scholar 

  • Brito-Junior M, Nobre SA, Freitas JC, Camilo CC, Faria-e-Silva AL (2012) Antibacterial activity of a plant extract and its potential for disinfecting gutta-percha cones. Acta Odontol Latinoam 25(1):9–13

    PubMed  Google Scholar 

  • Chen Q, Xie S (2019) Genotypes, enterotoxin gene profiles, and antimicrobial resistance of Staphylococcus aureus associated with foodborne outbreaks in Hangzhou, China. Toxins (Basel) 11(6):307

    Article  CAS  Google Scholar 

  • Cock IE (2012) Antimicrobial activity of Callistemon citrinus and Callistemon salignus methanolic extracts. Phcog Commn 2:50–57

    Article  Google Scholar 

  • Cwikla C, Schmidt K, Matthias A, Bone KM, Lehmann R, Tiralongo E (2010) Investigations into the antibacterial activities of phytotherapeutics against Helicobacter pylori and Campylobacter jejuni. Phytother Res 24(5):649–656

    Article  CAS  PubMed  Google Scholar 

  • Dike-Ndudim JN, Anyanwu GO, Egbuobi RC, Okorie HM, Udujih HI, Nwosu DC, Okolie NJC (2016) Anti-bacterial and phytochemical potential of Moringa oleifera leaf extracts on some wound and enteric pathogenic bacteria. Eur J Bot Plant Sci Phytol 3(1):50–60

    Google Scholar 

  • Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju YH (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22(3):296–302

    Article  CAS  PubMed  Google Scholar 

  • Duraipandiyan V, Ignacimuthu S (2009) Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam. J Ethnopharmacol 123(3):494–498

    Article  CAS  PubMed  Google Scholar 

  • Fayemi PO, Öztürk I, Özcan C, Muguruma M, Yetim H, Sakata R, Ahhmed A (2017) Antimicrobial activity of extract of Callistemon citrinus flowers and leaves against Listeria monocytogenes in beef burger. Food Measure 11:924–929

    Article  Google Scholar 

  • Fazly Bazzaz BS, Sarabandi S, Khameneh B, Hosseinzadeh H (2016) Effect of catechins, green tea extract and methylxanthines in combination with gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa: combination therapy against resistant bacteria. J Pharmacopuncture 19(4):312–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes L, Casal S, Pereira JA, Saraiva JA, Ramalhosa E (2018) Effects of different drying methods on the bioactive compounds and antioxidant properties of edible Centaurea (Centaurea cyanus) petals. Braz J Food Technol. https://doi.org/10.1590/1981-6723.21117

    Article  Google Scholar 

  • Ghosh A, Das BK, Roy A, Mandal B, Chandra G (2008) Antibacterial activity of some medicinal plant extracts. J Nat Med 62(2):259–262

    Article  PubMed  Google Scholar 

  • Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, Koeth L, Sei K (2018) CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol 56(4):e01934-e2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappeli N, Morach M, Corti S, Eicher C, Stephan R, Johler S (2019) Staphylococcus aureus related to bovine mastitis in Switzerland: clonal diversity, virulence gene profiles, and antimicrobial resistance of isolates collected throughout 2017. J Dairy Sci 102(4):3274–3281

    Article  CAS  PubMed  Google Scholar 

  • Karwa AS, Rai MK (2012) Naturally occurring medicinal mushroom-derived antimicrobials: a case-study using Lingzhi or Reishi Ganoderma lucidum (W. Curt.:Fr.) P. Karst. (higher Basidiomycetes). Int J Med Mushrooms 14(5):481–490

    Article  PubMed  Google Scholar 

  • Khairnar MS, Pawar B, Marawar PP, Mani A (2013) Evaluation of Calendula officinalis as an anti-plaque and anti-gingivitis agent. J Indian Soc Periodontol 17(6):741–747

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilic S, Okullu SO, Kurt O, Sevinc H, Dundar C, Altinordu F, Turkoglu M (2019) Efficacy of two plant extracts against acne vulgaris: initial results of microbiological tests and cell culture studies. J Cosmet Dermatol 18(4):1061–1065

    Article  PubMed  Google Scholar 

  • Kosari F, Taheri M, Moradi A, Hakimi Alni R, Alikhani MY (2020) Evaluation of cinnamon extract effects on clbB gene expression and biofilm formation in Escherichia coli strains isolated from colon cancer patients. BMC Cancer 20(1):267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuok CF, Hoi SO, Hoi CF, Chan CH, Fong IH, Ngok CK, Meng LR, Fong P (2017) Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: a computational and experimental study. Exp Biol Med (Maywood) 242(7):731–743

    Article  CAS  Google Scholar 

  • Ma P, Chen J, Bi X, Li Z, Gao X, Li H, Zhu H, Huang Y, Qi J, Zhang Y (2018) Overcoming multidrug resistance through the GLUT1-mediated and enzyme-triggered mitochondrial targeting conjugate with redox-sensitive paclitaxel release. ACS Appl Mater Interfaces 10(15):12351–12363

    Article  CAS  PubMed  Google Scholar 

  • Maema LP, Potgieter M, Masevhe NA, Samie A (2020) Antimicrobial activity of selected plants against fungal species isolated from South African AIDS patients and their antigonococcal activity. J Complement Integr Med 17(3):5. https://doi.org/10.1515/jcim-2019-0087

    Article  CAS  Google Scholar 

  • Moryl M, Spetana M, Dziubek K, Paraszkiewicz K, Rozalska S, Plaza GA, Rozalski A (2015) Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria. Acta Biochim Pol 62(4):725–732

    Article  CAS  PubMed  Google Scholar 

  • Mostafa AA, Al-Askar AA, Almaary KS, Dawoud TM, Sholkamy EN, Bakri MM (2018) Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci 25(2):361–366

    Article  PubMed  Google Scholar 

  • Muhuha AW, Kang’ethe SK, Kirira PG (2018) Antimicrobial Activity of Moringa oleifera, Aloe vera and Warbugia ugandensis on multidrug resistant Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Agents 4:168

    Google Scholar 

  • Nepali S, Cha JY, Ki HH, Lee HY, Kim YH, Kim DK, Song BJ, Lee YM (2018) Chrysanthemum indicum inhibits adipogenesis and activates the AMPK pathway in high-fat-diet-induced obese mice. Am J Chin Med 46(1):119–136

    Article  CAS  PubMed  Google Scholar 

  • Pires T, Dias MI, Barros L, Calhelha RC, Alves MJ, Oliveira M, Santos-Buelga C, Ferreira I (2018) Edible flowers as sources of phenolic compounds with bioactive potential. Food Res Int 105:580–588

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Islam MM, Sheikh SA, Sharmin A, Islam MS, Rahman A, Alam MF (2009) Antibacterial activity of leaf juice and extracts of Moringa oleifera Lam. against some human pathogenic. CMU J 8(2):219–228

    Google Scholar 

  • Ramesh PS, Kokila T, Geetha D (2015) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc 142:339–343

    Article  CAS  PubMed  Google Scholar 

  • Rios-Chavez P, Perez-Gonzalez J, Salgado-Garciglia R, Ramirez-Chavez E, Molina-Torres J, Martinez-Trujillo M, Carreon-Abud Y (2019) Antibacterial and cytotoxicity activities and phytochemical analysis of three ornamental plants grown in Mexico. An Acad Bras Cienc 91(2):e20180468

    Article  PubMed  CAS  Google Scholar 

  • Ruban P, Gajalakshmi K (2012) In vitro antibacterial activity of Hibiscus rosa-sinensis flower extract against human pathogens. Asian Pac J Trop Biomed 2(5):399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha AK, Nandi S, Dhar P (2017) Spectrum of microbial isolates from wound infections in patients admitted in a Tertiary Care Hospital, Kolkata. MGM J Med Sci 4(1):10–18

    Article  Google Scholar 

  • Sharma H, Karnwal A (2018) Impact of herbal extracts in biocontroling of four human pathogenic bacteria- an in-vitro study. Res J Pharm Technol 11(7):2895–2900

    Article  Google Scholar 

  • Tekwu EM, Pieme AC, Beng VP (2012) Investigations of antimicrobial activity of some Cameroonian medicinal plant extracts against bacteria and yeast with gastrointestinal relevance. J Ethnopharmacol 142(1):265–273

    Article  PubMed  Google Scholar 

  • Tresch M, Mevissen M, Ayrle H, Melzig M, Roosje P, Walkenhorst M (2019) Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review. BMC Vet Res 15(1):174

    Article  PubMed  PubMed Central  Google Scholar 

  • Turker AU, Usta C (2008) Biological screening of some Turkish medicinal plant extracts for antimicrobial and toxicity activities. Nat Prod Res 22(2):136–146

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar S, Morvin Yabesh JE, Arulmozhi P, Praseetha PK (2018) Identification and isolation of antimicrobial compounds from the flower extract of Hibiscus rosa-sinensis L: In silico and in vitro approaches. Microb Pathog 123:527–535

    Article  CAS  PubMed  Google Scholar 

  • WHO (2014) Antimicrobial resistance global report on surveillance. World Health Organization, Geneva

    Google Scholar 

  • Yakha JK, Sharma AR, Dahal N, Lekhak B, Banjara MR (2015) Antibiotic susceptibility pattern of bacterial isolates causing wound infection among the patients visiting B & B hospital. Nepal J Sci Technol 15(2):91–96

    Article  Google Scholar 

  • Zitterl-Eglseer K, Sosa S, Jurenitsch J, Schubert-Zsilavecz M, Della Loggia R, Tubaro A, Bertoldi M, Franz C (1997) Anti-oedematous activities of the main triterpendiol esters of marigold (Calendula officinalis L.). J Ethnopharmacol 57(2):139–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the authorities of Bhojia Institute of Life Sciences, Baddi, H.P. forwork.the facilities. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Funding

Not available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Karnwal.

Ethics declarations

Ethical approval

This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Conflict of interest

Arun Karnwal declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnwal, A. In vitro antibacterial activity of Hibiscus rosa sinensis, Chrysanthemum indicum, and Calendula officinalis flower extracts against Gram negative and Gram positive food poisoning bacteria. ADV TRADIT MED (ADTM) 22, 607–619 (2022). https://doi.org/10.1007/s13596-021-00562-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-021-00562-x

Keywords

Navigation