Skip to main content
Log in

Phytochemicals and biological studies on Cycas revoluta Thunb.: a review

  • Review
  • Published:
Advances in Traditional Medicine Aims and scope Submit manuscript

Abstract

This review article on Cycas revoluta mainly comprehensively summarizes characterization, morphology, distribution, traditional uses, phytochemical constituents and biological activities of isolated individual constituents as well as plant extract. Cycas revoluta is commonly known as Sago palm which belongs to gymnosperm species, cycadaceae family and has been used as a traditional medicine to cure blood vomiting, flatulence, skin diseases, hypertension, gastrointestinal distress, cough, blood pressure, hair growth, astringent, diuretic, snake bite, dressing wounds, swollen glands and stomach purifying. Its phytochemical analysis have been revealed the presence of flavonoids, glycosides, non-protein amino acids, fatty acids, benzenoids, terpenes, amino acids, diterpenoids, triterpenoids, sterols, esters and steroids. The chemical constituents and crude extracts exhibit biological activities such as antimicrobial, antioxidant, cytotoxic, antileishmanial, anticancer and many more.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Azuma H, Kono M (2006) Estragole (4-allylanisole) is the primary compound in volatiles emitted from the male and female cones of Cycas revoluta. J Plant Res 119:671–676

    Article  CAS  PubMed  Google Scholar 

  • Bailey LH (1950) The standard cyclopedia of horticulture. The Macmillan Company. New York, vol 1, p 1200

  • Barraso MLJ, Lacanilao GCD, Sac CAR, Vitor SJR (2017) Antidiabetic effects of Cycasriuminianaleaf extracts on alloxan-induced diabetic ICR mice (Musmusculus L.). Nat JPhysioPharmPharmacol 7:1390–1396

    Google Scholar 

  • Bera S, Das B, Arnab D, Samanta A (2018a) Preventive effect of Cycas revoluta in 1,2-dimethylhydrazine-induced colon cancer in Wistar Rat model. Asian J Pharm Clin Res 11:120–123

    Article  CAS  Google Scholar 

  • Bera S, Das B, De A, Barua A, Das S, De B, Samanta A (2018b) Metabolite profiling and in-vitro colon cancer protective activity of Cycas revoluta cone extract. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1491039

  • Boshra AES, Noor TMED, Abdel-Galeil LM, Aly WA (2016) Effect of natural activator (biohorm) and humic acid on growth and quality of cycas plant. Sci J Flowers Ornamental Plants 3:79–86

    Article  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1986) Glossary of Indian medicinal plants. Council of Scientific and Industrial Research, New Delhi

    Google Scholar 

  • Dash RP, Lamia SS, Khan F, Sarah HS, Islam SS (2018) Phytochemistry and medicinal properties of Lagerstroemia speciosa (Lythraceae) extracts: a review. J Life Sci Rev 1:1–9

    Google Scholar 

  • Donaldson JS (2003) Cycads: status survey and conservation action plan. IUCN Gland, Switzerland and Cambridge

    Google Scholar 

  • Duncan MW, Kopin IJ, Crowley JS, Jones SM, Markey SP (1989) Quantification of the putative neurotoxin 2-amino-3-(methylamino) propanoic acid (BMAA) in cycadales: analysis of the seeds of some members of the family Cycadaceae. J Analyt Toxic Toxicol 13:169–175

    Article  CAS  Google Scholar 

  • Dwivedi S (2016) Preparation and extraction of antibiotic from ovule of Cycas revoluta. Int J Res SciTechnol 6:49–54

    Google Scholar 

  • Fernando DGW (2012) An international scientific open access journal to publish all facets of plants. Their functions and interactions with the environment and other living organisms. Plant 1:1–5

    Article  Google Scholar 

  • Galeotti F, Barile E, Curir P, Lanzotti V (2008) Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett 1:44–48

    Article  CAS  Google Scholar 

  • Geiger H, Pfleiderer GDW (1971) Uber 2,3-dihydrobiflavone in Cycas revoluta. Phytochem 10:1936–1938

    Article  CAS  Google Scholar 

  • Hang HL, Nagatsu A, Okuyama H, Mizukami H, Sakakibara J (1998) Sesquiterpene glycosides from cotton oil cake. Phytochem 48:665–668

    Article  Google Scholar 

  • Hirayama B, Hazama A, Loo FD, Wright ME, Kisby EG (1994) Transport of cycasin by theintestinal Na+/glucose cotransporter. BiochimicaBiophysiaActa 1193:151–154

    CAS  Google Scholar 

  • Holler S (2012) A closer look at plant classifications, parts and uses, Britannica Eductional publishing in association with Rosen Eductional Services, ist edn, New York, p 30–31

  • Huang T, Jander G, De Vos M (2011) Non-protein amino acids in plants defense against insect herbivores:representative cases and opportunities for further functional analysis. Phytochem 72:1531–1537

    Article  CAS  Google Scholar 

  • Hussain T, Arshad M, Khan S, Sattar H, Qureshi MS (2011) In vitro screening of methanol plant extracts for their antibacterial activity. Pak J Bot 43:531–538

    CAS  Google Scholar 

  • Ibrahim AERS, Negmetal AW, Kamilia AAES, Ghada IA, Amany ER (2016) A new cytotoxic and antioxidant Amentoflavone Monoglucoside from Cycas revoluta Thunb growing in Egypt. J PharmSci Res 8:343–350

    Google Scholar 

  • Jeychandran R, Baskaran X, Cindrella L (2010) In vitro antibacterial activity of three Indian medicinal Plants. Int J BiolTechnol 1:103–106

    Google Scholar 

  • Jones D, Washington DC (1993) Cycads of the World. Smithsonian Institution Press, Washington

    Google Scholar 

  • Kaur H, Kumari A, Kumar M, Sachdeva D, Bala R, Prakash V (2020) Phytochemicals analysis of Sarcotesta layer of Cycas revoluta Thunb. Fruit through GC-MS. Int J Adv Sci Technol 29(8):5111–5118

    Google Scholar 

  • Kenji O, Noriko I, Mitsuyuki H, Yoshinori N, Makoto K (2001) Hair cosmetic/novel use of leaf of Acer mono Maximum of Acemceae family and seeds of Cycas revoluta of Cycadaceae family for preventing the generation of gray hair, and hair cosmetic containing the same. Japanese Kokai, Tokkyo, Koho

    Google Scholar 

  • Khan MA (2016) Introduction and importance of medicinal plants and herbs. National Health Portal (NHP), India. https://www.nhp.gov.in/introduction-and-importance-of-medicinal-plants-and-herbs_mtl

  • Khan UR, Mehmood S, Sherwani KS, Khan US, Khan A, Ullah I, Khan KD, Inam AS (2013) Study of chemical constituents and medicinal uses of ornamental species of District Bannu. World J Publ 1:173–198

    Google Scholar 

  • Kobayashi A, Tadera K, Yagi F, Etoh Y, Yasuda S (1979) Chemical reduction of cycasin, the toxic glycoside of Cycad. Memoirs of the Faculty of Agriculture. Kagoshima University 15:159–166

    CAS  Google Scholar 

  • Kotaro N, Akira K, Tomonori N (1955) Studies on Cycasin, a new toxic glycoside of Cycas revoluta Thunb. Bull AgrChem Soc Japan 19:77–84

    Google Scholar 

  • Kowalska TM, Itzhak Y, Puett D (1995) Presence of aromatase inhibitors in cycads. J Ethnopharm 47:113–116

    Article  CAS  Google Scholar 

  • Kruger T, Monch B, Oppenhouser S, Luckas B (2010) LC–MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyruslatifolius. Toxic 55:547–557

    Article  CAS  Google Scholar 

  • Lal JJ (2003) Centre for development of science and technology. Thrissur Kerala India, Elsevier, Amsterdam

    Google Scholar 

  • Lal K, Ahmed N, Mathur A (2017) Study of the antimicrobial profile and phytochemical composition of solvent extracts of leaves and female cones of Cycas revoluta. Int J Curr Microbiol App Sci 6:2514–2522

    CAS  Google Scholar 

  • Laqueur GL, Spatz M (1968) Toxicology of Cycasin, cancer research, biological assays of plant extracts. Cancer Res 28:2262–2267

    CAS  PubMed  Google Scholar 

  • Lim TK (2012) Cycas revoluta in edible medicinal and non-medicinal plants. Springer, Netherland, pp 732–738

    Book  Google Scholar 

  • Lindstrom AJ, Hill KD, Stanberg L (2007) The genus Cycas (Cycadaceae) in the Philippines. Telopea 12:119–145

    Google Scholar 

  • Lorraine H (2012) RHS Latin for gardeners. Mitchell Beazley, United Kingdom, p 224

    Google Scholar 

  • Madulid DA, Agoo EMG (2009) Taxonomy and conservation of Philippine Cycads. Blumea 54:99–102

    Article  Google Scholar 

  • Mandal MS, Migliolo L, Das S, Mandal M, Franco LO, Hazra KT (2012) Identification and characterization of a bactericidal and proapoptotic peptide from Cycas revoluta seeds with DNA binding properties. J Cell Biochem 113:184–193

    Article  CAS  PubMed  Google Scholar 

  • Mathur A, Dua VK, Prasad GBKS, Verma SK, Singh SK (2011) Phytochemical investigation and in vitro antioxidant activity of some medicinally important plants. Int Res J Pharm 2:116–122

    Google Scholar 

  • Mabry JT, Pan M, Ping C, Mehdi M (1997) Identification of non-protein amino acids from cycad seeds as N-ethoxycarbonyl ethyl ester derivatives by positive chemical- ionization gas chromatography-mass spectrometry. J Chroma A 787:288–294

    Article  Google Scholar 

  • Moawad A, Hetta M, Zjawiony KJ, Ferreira D, Hifnawy M (2014) Two new dihydroamentoflavone glycosides from Cycas revoluta. Nat Prod Res 28:41–47

    Article  CAS  PubMed  Google Scholar 

  • Moawad A, Hetta M, Zjawiony KJ, Jacob RM, Hifnawy M, Marais JPJ, Ferreira D (2010) Phytochemical investigation of Cycascircinalis and Cycas revoluta leaflets: moderately active antibacterial biflavonoids. Planta Med 76:796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti A, Sabato S, Gigliano SG (1983) Taxonomic significance of methylazoxymethanol glycosides in the Cycad. Phytochem 22:115–117

    Article  CAS  Google Scholar 

  • Mourya KM, Prakash A, Swami A, Singh KG, Mathur A (2011) Leaves of Cycas revoluta: potent antimicrobial and antioxidant agent. World J Sci Tech 1:11–20

    CAS  Google Scholar 

  • Mujeeb F, Bajpai P, Pathak N (2014) Phytochemical evaluation, antimicrobial activities and determination of bioactive components from leaves of Aegle marmelos. BioMed Res Int 2014:1–11

    Article  Google Scholar 

  • Nair JJ, Staden JV (2012) Isolation and quantification of the toxic methylazoxymethanol glycoside macrozamin in selected South African cycad species. South African J Bot 82:108–112

    Article  CAS  Google Scholar 

  • Negmetal AW, Ibrahim AERS, Kamilia AAES, Ghada IA, Amany ER (2016) GC-MS analysis of petroleum ether extract and volatiles of Cycas revoluta Thunb growing in Egypt. Invent Rapid Planta Act 201:1–5

    Google Scholar 

  • Nishida K, Kobayashi A, Nagahama T, Numata T (1959) Studies on some new azoxy glycosides of Cycas revoluta Thunb. Bull AgrChernSoc Japan 23:460–464

    CAS  Google Scholar 

  • Nishida K, Kobayashi A, Nagahama T (1956) Studies on Cycasin, a new toxic glycoside of Cycas revoluta Thunb. Bull AgrChemSoc Japan 20:122–126

    CAS  Google Scholar 

  • Osborne R, Calonje MA, Hill KD, Stanberg L, Stevenson DW (2012) The world list of cycads. Memoirs N Y Bot Garden 106:480–510

    Google Scholar 

  • Osamu N, Toshihiro S, Tomoyuki H (2002) Hair-growing agent composition. Japanese Kokai, Tokyo, Koho

    Google Scholar 

  • Palhares MR, Drummond GM, Brasil Figueiredo ASDB, Cosenza PG, Brandao Lins GDM, Oliveira G (2015) Medicinal plants recommended by the World Health Organization: DNA barcode identification associated with chemical analyses guarantees their Qqality. PLoS ONE 10:1–29

    Article  CAS  Google Scholar 

  • PanM BMJ, Mamiy MB (1997) Non protein amino acids from Cycas revoluta. Phytochem 45:517–519

    Article  CAS  Google Scholar 

  • Prasad GJ, Ganesh ST, Priti ST (2013) Herbal hepatotoxicity: a review on phytochemical induced liver injury. J App Pharm Sci 3:106–110

    Google Scholar 

  • Rao GP, Baghel AKS, Singh RK, Chatterji KS (2007) Antiviral activity of coralloid root of Cycas revoluta extract against some viruses of tomato plant. Cell Molec Life Sci 40(11):1257–1258

    Article  Google Scholar 

  • Rosmiati LS, Suryati E (2016) The effect of Phytoecdysteroid of Cycas revoluta, Portulacaoleracea, and Morus sp. on molting period, growth and survival rate of Tiger Shrimp. Penaeusmonodon Indonesian Aquacult J11:69–74

    Google Scholar 

  • Shahid W, Durrani R, Iram S, Durrani M, Khan AF (2013) Antibacterial activity in vitro of medicinal plants. Sky J Micrbiol Res 1:5–21

    Google Scholar 

  • Sharma R, Mathur A (2015) Evaluation of antioxidant potential of solvent extracts of female cones and leaves of Cycas revoluta. World J Pharm Pharmaceut Sci 4:1466–1472

    Google Scholar 

  • Sharma R, Katiyar A, Mathur A (2014) Screening of solvent extracts of Cycas revoluta for isolation of antimicrobial compound. Biolife 2:1218–1228

    Google Scholar 

  • Sidorov RA, Kuznetsova EI, Pchelkin VP, Zhukov AV, Gorshkova EN, Tsydendambaev VD (2016) Fatty acid composition of the pollen lipids of Cycas revoluta Thunb. Grasasy Act 67:1–5

    Google Scholar 

  • Singh LK, Bag GC (2013) Phytochemical analysis and determination of total phenolic contents of in water extract of three species Hedychium. Int J PharmTech Res 5:1516–1521

    Google Scholar 

  • Spatz M (1969) Toxic and carcinogenic alkylating agents from cycads. Ann New York Acad Sci 163:848–859

    Article  CAS  Google Scholar 

  • Tadera K, Ginya H, Sawada R, Motani Y, Aikawa Y, Nozaki A, Yagi F, Minam Y (1995) Cycasin formation in tissue cultures of Japanese Cycad. Phytochem 38:1199–1201

    Article  CAS  Google Scholar 

  • Tadera K, Yagi F, Arima M, Kobayashi A (1985) Formation of Cycasin from Methylazoxymethanol by UDP-Glucosyltransferase from leaves of Japanese Cycad. Agric Bio Chem 49:2827–2828

    CAS  Google Scholar 

  • Takagi T, Itabashi Y (1982) Department of Chemistry, Faculty of Fisheries. Hokkaido University. Hakodate. Japan. Cis-5-Oiefinic unusual fatty acids in seeds lipids of Gymnospermae and their distribution in Triacylglycerols. Lipids 17:716–717

    Article  CAS  Google Scholar 

  • Takemura T, Sakuno E, Kamo T, Hiradate S, Fujii Y (2013) Screening of the growth-inhibitory effects of 168 plant species against Lettuce seedlings. Am J Plant Sci 4:1095–1104

    Article  Google Scholar 

  • Thieret JW (1958) Economic botany of cycad. Eco bot 12:3–41

    Article  Google Scholar 

  • Tomonori N, Kotaro N, Akira K (1955) Studies on Cycasin, a new toxic glycoside, of Cycas revoluta Thunb. Bull AgricChernSoc Japan 19:172–177

    Google Scholar 

  • Tomonori N, Kotaro N, Tadao N (1961) Neocycasin E, β-Cellobiosyloxyazoxymethane. AgrBiolChem 25:937–938

    Google Scholar 

  • Tomonori N, Kotaro N, Tadao N (1960) The structure of neocycasin C formed by Transglycosylation with Cycad emulsin. BullAgrChernSoc Japan 24:536–537

    Google Scholar 

  • Tomonori N, Tadao N, Kotaro N (1959) Neocycasin B and Macrozamin. J AgrChemSoc Japan 23:556–557

    Google Scholar 

  • Usman BA, Abubakar S, Alaku C, Ninadi O (2014) Plant: a necessity of life. Plant 20:151–159

    Google Scholar 

  • Verma SK, Mathur A, SinghSK PGBKS, Dua VK (2011) Investigation of the antimicrobial, antioxidant and anti-inflammatory activity of the compound isolated from Murrayakoenigii. Int J App Bio Pharm Tech 2:470–477

    Google Scholar 

  • Vieno P, David GL, Tatu AM, Jari T, Anna-Maija L (2000) Plant sterol: biosynthesis, biologica function and their importance to human nutrition. J Sci food Agr 80:939–966

    Article  Google Scholar 

  • Vijisaral ED, Subramanian A (2013) Identification of phytochemical constituents and antimicrobial activity of Indigofera Suffruticosa leaves. Int J Curr Biotech 1:6–10

    Google Scholar 

  • Walters T, Osborne R (2004) Cycad classification concepts and recommodation, vol 70. CABI publishing. Wallingford, pp 676–677

  • Wang X (2009) Preparation of Chinese medicinal compositions for treating cancers, diabetes, cardiovascular diseases, AIDS, liver diseases and poisoning. Faming ZhuanliShenqingGongkaiShuomingshu

  • Whiting MG (1963) Toxicity of cycad. Eco bot 17:270–302

    Article  Google Scholar 

  • Whiting M, Spatz M, Matsumoto H (1966) Research progress on cycads. Econ Bot 20:98–102

    Article  Google Scholar 

  • Xua Y, Dai Q, Luan Z, Xiang Z, Wu J, Fan Y(2014) Three flavonoids from Cycas revoluta. In: Proceedings of the 2nd International conference on intelligent systems and image processing, pp 287–290

  • Xua Y, Daib CQ, Luanc ZZ, Xiangd Z, Wue J, Fan LY(2017) Analysis chemical composition in Cycas revoluta by GC-MS. Med Biopharma 950–955

  • Yagi F, Tadera K (1987) Azoxyglycoside contents in seeds of several cycad species and various parts of Japanese Cycad. Agric Bio Chem 51:1719–1721

    CAS  Google Scholar 

  • Yagi F (2004) Azoxyglycoside content and b-glycosidase activities in leaves of various cycads. Phytochem 65:3243–3247

    Article  CAS  Google Scholar 

  • Yagi F, Iwaya T, Haraguchi T, Goldstein JI (2002) The lectin from leaves of Japanese cycad Cycas revouta Thunb. (gymnosperm) is a member of the jacalin-related family. Eur J Biochem 269:4335–4341

    Article  CAS  PubMed  Google Scholar 

  • Yagi F, Tadera K, Kobayashi A (1985a) A new azoxyglycoside containing isomaltose: neocycasin Bα. AgricBioiChem 49:1531–1532

    CAS  Google Scholar 

  • Yagi F, Tadera K, Kobayashi A (1980) Simultaneous determination of Cycasin, Methylazoxymethanol and formaldehyde by high performance liquid chromatography. AgricBioiChem 44:1423–1425

    CAS  Google Scholar 

  • Yagi F, Tadera K, Kobayashi A (1985b) Formation of three new Trisaccharide-azoxyglycosides by Transglucosylation by cycad β-glucosidase. AgricBioiChem 49:2985–2990

    CAS  Google Scholar 

  • Yagi F, Tadera K (1996) Substrate specificity and transglucosylation catalyzed by cycad P-glucosidase. Biochimica Biophys Acta 1289:1315–1321

    Google Scholar 

  • Yokoyama S, Kato K, Koba A, Minami Y, Watanabe K, Yagi F (2008) Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds. Peptides 29:2110–2117

    Article  CAS  PubMed  Google Scholar 

  • Zaffar M, Munis HFM, Masood S, Rasul F, Hassan WS, Imran M, Nasim W, Zakir A, Quraishi MU, Chaudhary JH (2014) Biological assays of plant extracts from Araucaria columnaris and Cycas revoluta. J Food AgrEnv 12:128–131

    Google Scholar 

  • Zhukov AV, Kuznetsova EI, Pchelkin VP, Sidorov RA, Tsydendambaev VD (2018) Fatty acid composition of lipids from leaves and strobila of Cycas revoluta. Russian J Plant Physiol 65:23–29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful of Department of Chemistry, Maharishi Markendeshwar University Management for support on this work. We have not received any funding source for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinit Prakash.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Vinit Prakash has no conflict of interest. Harpreet Kaur has no conflict of interest. Anjana Kumari has no conflict of interest. Manoj Kumar has no conflict of interest. Ritu Bala has no conflict of interest. Sumeet Gupta has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, V., Kaur, H., Kumari, A. et al. Phytochemicals and biological studies on Cycas revoluta Thunb.: a review. ADV TRADIT MED (ADTM) 21, 389–404 (2021). https://doi.org/10.1007/s13596-020-00520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-020-00520-z

Keywords

Navigation