Skip to main content

Advertisement

Log in

Study of the antifungal potential of carvacrol on growth inhibition of Candida krusei in a systemic candidiasis

  • Research Article
  • Published:
Advances in Traditional Medicine Aims and scope Submit manuscript

Abstract

Candidiasis caused by non-albicans Candida species present a serious global health threat. Although the available antifungal drugs are recommended, resistance phenomenon of these agents is beginning to emerge, demonstrating the urgently need for new and effective antifungal agents. Here, we have aimed to describe the antifungal activity of carvacrol against Candida krusei both in vitro and in a systemic candidiasis mouse model. In vitro susceptibility of C. krusei isolates to carvacrol were assessed using the Clinical and Laboratory Standards Institute broth microdilution reference method. In vivo, carvacrol was evaluated in murine models of systemic candidiasis by determination of fungal loads of kidneys, survival time and histopathologic analyses. Carvacrol exhibit minimum inhibitory concentration in the 6.00 ± 2.80 µg/mL to 8.00 ± 0.00 µg/mL range. In vivo, carvacrol decreased fungal load of kidneys (p < 0.05) and prevented the death of mice in a systemic candidiasis model (mean survival time, 20.50 ± 3.63). Carvacrol was also slightly less efficacious than fluconazole at reducing the fungal loads and survival time. Taken together, our results indicate that carvacrol has the potential to represent as an antifungal agent for clinical use. The data encouraged further development of this antifungal agent for non-albicans Candida species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad A, Khan A, Akhtar F, Yousuf S, Xess I, Khan LA, Manzoor N (2011) Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur J Clin Microbiol Infect Dis 30:41–50

    CAS  PubMed  Google Scholar 

  • Alagawany M, El-Hack MEA, Farag MR, Tiwari R, Dhama K (2015) Biological effects and modes of action of carvacrol in animal and poultry production and health—a review. Adv Anim Vet Sci 3:73–84

    Google Scholar 

  • Alizadeh F, Khodavandi A, Sadat Faraji F (2017) Malva sylvestris inhibits Candida albicans biofilm formation. J Herbmed Pharmacol 6:62–68

    CAS  Google Scholar 

  • Alizadeh F, Khodavandi A, Esfandyari S, Nouripour-Sisakht S (2018) Analysis of ergosterol and gene expression profiles of sterol ∆5,6-desaturase (ERG3) and lanosterol 14α-demethylase (ERG11) in Candida albicans treated with carvacrol. J Herbmed Pharmacol 7:79–87

    CAS  Google Scholar 

  • Ashman RB, Papadimitriou JM (1988) Murine candidiasis: strain dependence of host responses after immunization. Immunol Cell Biol 66:231–237

    PubMed  Google Scholar 

  • Cabarkapa I, Skrinjar M, Levic J, Blagojev N, Kokic B, Plavsic D, Suvajdzic L (2015) Influence of thymol and carvacrol on initial cell attachment and biofilm of Candida albicans. Food Feed Res 42:23–30

    CAS  Google Scholar 

  • Chaillot J, Tebbji F, Remmal A, Boone C, Brown GW, Bellaoui M, Sellam A (2015) The monoterpene carvacrol generates endoplasmic reticulum stress in the pathogenic fungus Candida albicans. Antimicrob Agents Chemother 59:4584–4592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chami N, Chami F, Bennis S, Trouillas J, Remmal A (2004) Antifungal treatment with carvacrol and eugenol of oral candidiasis in immunosuppressed rats. Braz J Infect Dis 8:217–226

    CAS  PubMed  Google Scholar 

  • Chami N, Bennis S, Chami F, Aboussekhra A, Remmal A (2005) Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol Immunol 20:106–111

    CAS  PubMed  Google Scholar 

  • Chen Z, Li X, Wu X, Wang W, Wang W, Xin M, Shen F, Liu L, Liang J, Li L, Yu L (2014) Synergistic activity of econazole-nitrate and chelerythrine against clinical isolates of Candida albicans. Iran J Pharm Res 13:567–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY (2018) Transcriptomic and genomic approaches for unravelling Candida albicans biofilm formation and drug resistance-an update. Genes (Basel) 9:piii: E540

    Google Scholar 

  • CLSI (Clinical and Laboratory Standards Institute) (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A3, 3rd ed. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  • Dalleau S, Cateau E, Bergès T, Berjeaud JM, Imbert C (2008) In vitro activity of terpenes against Candida biofilms. Int J Antimicrob Agents 31:572–576

    CAS  PubMed  Google Scholar 

  • Deorukhkar SC, Saini S, Mathew S (2014) Non-albicans Candida infection: an emerging threat. Interdiscip Perspect Infect Dis. https://doi.org/10.1155/2014/615958

    Article  PubMed  PubMed Central  Google Scholar 

  • Doi K, Leelahavanichkul A, Yuen PST, Star RA (2009) Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest 119:2868–2878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferhout H, Bohatier J, Guillot J, Chalchat JC (1999) Antifungal activity of selected essential oils, cinnamaldehyde and carvacrol against Malassezia furfur and Candida albicans. J Essen Oil Res 11:1

    Google Scholar 

  • Gallucci MN, Carezzano ME, Oliva MM, Demo MS, Pizzolitto RP, Zunino MP, Zygadlo JA, Dambolena JS (2014) In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: a quantitative structure-activity relationship analysis. J Appl Microbiol 116:795–804

    CAS  PubMed  Google Scholar 

  • Goyal RK, Sami H, Mishra V, Bareja R, Behara RN (2016) Non-albicans Candiduria: an emerging threat. J Appl Pharm Sci 6:48–50

    Google Scholar 

  • Gutiérrez-Larraínzara M, Rúa J, Caro I, de Castro C, de Arriaga D, García-Armesto MR, Valle P (2012) Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Cont 26:555–563

    Google Scholar 

  • Hosseini SS, Yadegari MH, Rajabibazl M, Ghaemi EA (2016) Inhibitory effects of carvacrol on the expression of secreted aspartyl proteinases 1–3 in fluconazole-resistant Candida albicans isolates. Iran J Microbiol 8:401–409

    PubMed  PubMed Central  Google Scholar 

  • Johnson MD, Perfect JR (2010) Use of antifungal combination therapy: agents, order, and timing. Curr Fungal Infect Rep 4:87–95

    PubMed  PubMed Central  Google Scholar 

  • Juyal D, Sharma M, Pal S, Rathaur VK, Sharma N (2013) Emergence of non-albicans Candida species in neonatal candidemia. N Am J Med Sci 5:541–545

    PubMed  PubMed Central  Google Scholar 

  • Khodavandi A, Alizadeh F, Harmal N, Sidik SM, Othman F, Sekawi Z, Farboodniay Jahromi MA, Ng KP, Chong PP (2011) Comparison between efficacy of allicin and fluconazole against Candida albicans in vitro and in a systemic candidiasis mouse model. FEMS Microbiol Lett 315:87–93

    CAS  PubMed  Google Scholar 

  • Khodavandi A, Alizadeh F, Sanaee T (2018) Antifungal activity of carvacrol on ergosterol synthesis in multidrug resistant Candida albicans. Medical J Hormozgan Univ Med Sci 22:113–121

    Google Scholar 

  • Lima IO, de Oliveira Pereira F, de Oliveira WA, de Oliveira Lima E, Menezes EA, Cunha FA, de Fátima MFMD (2013) Antifungal activity and mode of action of carvacrol against Candida albicans strains. J Essent Oil Res 25:138–142

    CAS  Google Scholar 

  • Manohar V, Ingram C, Gray J, Talpur NA, Echard BW, Bagchi D, Preuss HG (2001) Antifungal activities of Origanum oil against Candida albicans. Mol Cell Biochem 228:111–117

    CAS  PubMed  Google Scholar 

  • Marcos-Arias C, Eraso E, Madariaga L, Quindos G (2011) In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement Altern Med 11:119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mushi MF, Mtemisika CI, Bader O, Bii C, Mirambo MM, Groß U, Mshana SE (2016) High oral carriage of non-albicans Candida spp. among HIV-infected individuals. Int J Infect Dis 49:185–188

    PubMed  Google Scholar 

  • Nguyen TNY, Padungros P, Wongsrisupphakul P, Sa-Ard-Iam N, Mahanonda R, Matangkasombut O, Choo MK, Ritprajak P (2018) Cell wall mannan of Candida krusei mediates dendritic cell apoptosis and orchestrates Th17 polarization via TLR-2/MyD88-dependent pathway. Sci Rep 8:17123

    PubMed  PubMed Central  Google Scholar 

  • Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE, Sobel JD (2016) Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 62:e1–e50

    PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Nagy E, Dobiasova S, Rinaldi M, Barton R, Veselov A (2008) Global Antifungal Surveillance Group. Candida krusei, a multidrug-resistant opportunistic fungal pathogen: geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J Clin Microbiol 46:515–521

    CAS  PubMed  Google Scholar 

  • Pina-Vaz C, Gonçalves Rodrigues A, Pinto E, Costa-de-Oliveira S, Tavares C, Salgueiro L, Cavaleiro C, Gonçalves MJ, Martinez-de-Oliveira J (2004) Antifungal activity of Thymus oils and their major compounds. J Eur Acad Dermatol Venereol 18:73–78

    CAS  PubMed  Google Scholar 

  • Piras A, Cocco V, Falconieri D, Porcedda S, Marongiu B, Maxia A, Frau MA, Gonçalves MJ, Cavaleiro C, Salgueiro L (2011) Isolation of the volatile oil from Satureja thymbra by supercritical carbon dioxide extraction: chemical composition and biological activity. Nat Prod Commun 6:1523–1526

    CAS  PubMed  Google Scholar 

  • Rao A, Zhang Y, Muend S, Rao R (2010) Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother 54:5062–5069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanches MD, Mimura LAN, Oliveira LRC, Ishikawa LLW, Garces HG, Bagagli E, Sartori A, Kurokawa CS, Fraga-Silva TFC (2019) Differential behavior of non-albicans Candida species in the central nervous system of immunocompetent and immunosuppressed mice. Front Microbiol 9:2968

    PubMed  PubMed Central  Google Scholar 

  • Shadkchan Y, Shemesh E, Mirelman D, Miron T, Rabinkov A, Wilchek M, Osherov N (2004) Efficacy of allicin, the reactive molecule of garlic, in inhibiting Aspergillus spp. in vitro, and in a murine model of disseminated aspergillosis. J Antimicrob Chemoth 53:832–826

    CAS  Google Scholar 

  • Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, Del Mar Contreras M, Salehi B, Soltani-Nejad A, Rajabi S, Tajbakhsh M, Sharifi-Rad J (2018) Carvacrol and human health: a comprehensive review. Phytother Res 32:1675–1687

    CAS  PubMed  Google Scholar 

  • Sharifzadeh A, Shokri H, Abbaszadeh S (2018) Interaction of carvacrol and voriconazole against drug-resistant Candida strains isolated from patients with candidiasis. J Mycol Med 29:44–48

    PubMed  Google Scholar 

  • Spampinato C, Leonardi D (2013) Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int 2013:204237

    PubMed  PubMed Central  Google Scholar 

  • Suntres ZE, Coccimiglio J, Alipour M (2015) The bioactivity and toxicological actions of carvacrol. Crit Rev Food Sci Nutr 55:304–318

    CAS  PubMed  Google Scholar 

  • Szabo EK, MacCallum DM (2011) The contribution of mouse models to our understanding of systemic candidiasis. FEMS Microbiol Lett 320:1–8

    CAS  PubMed  Google Scholar 

  • Vardar-Unlu G, Yağmuroğlu A, Unlu M (2010) Evaluation of in vitro activity of carvacrol against Candida albicans strains. Nat Prod Res 24:1189–1193

    CAS  PubMed  Google Scholar 

  • Yong PVC, Rosli R, Fong SH, Sidik SM, Chong PP (2012) Histopathological characteristics of experimental Candida tropicalis induced acute systemic candidiasis in BALB/c mice. Int J Zool Res 8:12–22

    Google Scholar 

  • Zhang Y, Muend S, Rao R (2012) Dysregulation of ion homeostasis by antifungal agents. Front Microbiol 3:133

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Sadegh Nouripour-Sisakht from the Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran for kindly providing the clinical isolates of C. krusei. The authors wish to thank the Islamic Azad University of Yasooj for providing all the required research facilities. The results presented in this study is part of the Master thesis of Moslem Feridoniy (IR.IAU.YASOOJ.REC.1396.12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fahimeh Alizadeh or Esmaeel Panahi Kokhdan.

Ethics declarations

Ethical statement

All procedures performed in studies involving human participants, which are obtained from Microbiology Laboratory, Cellular and Molecular Research Center, Yasuj University of Medical Sciences, were in accordance with the ethical standards of the institutional and/or national research committee and with the 2000 Helsinki declaration. The animal studies were approved by Islamic Azad University Animal Ethics Committee, which adheres to international procedures for animal care (IR.IAU.YASOOJ.REC.1396.12).

Conflict of interest

Moslem Feridoniy has no conflict of interest. Fahimeh Alizadeh has no conflict of interest. Esmaeel Panahi Kokhdan has no conflict of interest. Alireza Khodavandi has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feridoniy, M., Alizadeh, F., Panahi Kokhdan, E. et al. Study of the antifungal potential of carvacrol on growth inhibition of Candida krusei in a systemic candidiasis. ADV TRADIT MED (ADTM) 20, 591–598 (2020). https://doi.org/10.1007/s13596-020-00482-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-020-00482-2

Keywords

Navigation