Skip to main content
Log in

Bee size increases pollen deposition in Cucurbita maxima (Cucurbitaceae) crops

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

The study of the performance of animal pollinators has expanded in recent decades mainly due to the concern on crop productivity. Among insects, bees are the main pollinators of most Angiosperm species. The aim of this paper was to study the effect of bee body size on the pollination of Cucurbita maxima Duch. (Cucurbitaceae) var. zapallito crops. We quantified stigmatic pollen deposition by single visits of bee species with different body sizes. Bee species were classified into four categories accordingly to their intertegular distance: Very small (≤ 1.7 mm), Small (1.71 mm < 2.7 mm), Medium (2.71 mm < 3.7 mm) and Large (> 3.71 mm). Fifteen bee species belonging to the Apidae and Halictidae families were observed depositing pollen on the stigmas of C. maxima. The number of pollen grains deposited and the probability of pollen deposition per visit increased significantly with body size. Large bees Xylocopa augusti and Bombus pauloensis were the most efficient species at depositing pollen on stigmas followed by medium-sized bees Eucera fervens and Apis mellifera. The results show that several wild bee species play an important role in the pollination of C. maxima crops. This research provides baseline data for the design of pollination studies to develop strategies to optimize pollination of this crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

Data availability

The datasets of this study are available from the corresponding author on request.

Code availability

Not applicable.

References

  • Aizen MA, Aguiar S, Biesmeijer JC, Garibaldi LA, Inouye DW et al (2019) Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob Chang Biol 25(10):3516–3527

    Article  PubMed  PubMed Central  Google Scholar 

  • Artz DR, Nault BA (2011) Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. J Econ Entomol 104(4):1153–1161

    Article  PubMed  Google Scholar 

  • Ashworth L, Quesada M, Casas A, Aguilar R, Oyama K (2009) Pollinator-dependent food production in Mexico. Biol Conserv 142(5):1050–1057

    Article  Google Scholar 

  • Baldini C, Marasas ME, Drozd AA (2021) Three decades of landscape change across the largest peri-urban horticultural region of Argentina: urban growth, productive intensification and the need for resilient landscape management. J Environ Plan Manag 65(10):1781–1820

    Article  Google Scholar 

  • Baldini C, Marasas ME, Tittonell P, Drozd AA (2022) Urban, periurban and horticultural landscapes–Conflict and sustainable planning in La Plata district, Argentina. Land Use Policy 117:106–120

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M et al (2006) Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 313(5785):351–354

    Article  CAS  PubMed  Google Scholar 

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW et al (2017) glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R J 9(2):378–400

    Article  Google Scholar 

  • Buchmann SL, Nabham GP (1996) The Forgotten Pollinators. Island Press, Washington, DC

    Google Scholar 

  • Cane JH (1987) Estimation of bee size using intertegular span (Apoidea). J Kans Entomol Soc 60:145–147

    Google Scholar 

  • Cane JH, Sampson BJ, Miller SA (2011) Pollination value of male bees: the specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo). Environ Entomol 40(3):614–620

    Article  PubMed  Google Scholar 

  • Canto-Aguilar MA, Parra-Tabla V (2000) Importance of conserving alternative pollinators: assessing the pollination efficiency of the squash bee, Peponapis limitaris in Cucurbita moschata (Cucurbitaceae). J Insect Conserv 4:203–210

    Article  Google Scholar 

  • Cardinal S, Danforth BN (2013) Bees diversified in the age of eudicots. Proc R Soc B-Biol Sci 280:20122686

    Article  Google Scholar 

  • Chacoff N, Aizen M (2007) Pollination requirements of pigmented grapefruit (Citrus paradisi Macf.) from Northwestern Argentina. Crop Sci 47:1143–1150

    Article  Google Scholar 

  • Chacoff NP, Morales CL, Garibaldi LA, Ashworth L, Aizen MA (2010) Pollinator dependence of Argentinean agriculture: current status and temporal analysis. Am J Plant Sci Biotechnol 3(1):106–116

    Google Scholar 

  • Córtez-Goméz AM, González-Cháves A, Urbina-Cardona N, Garibaldi LA (2023) Functional traits in bees: the role of body size and hairs in the pollination of a Passiflora crop. Neotrop Entomol 52:642–651

    Article  Google Scholar 

  • Dalmazzo M, Zumoffen L, Ghiglione C, Roig-Alsina A, Chacoff N (2024) Diversity and biological traits of bees visiting flowers of Cucurbita maxima var. zapallito differ between biodiversity‑based and conventional management practices. Environ Monit Assess 196(6)

  • Danforth BN, Minckley RL, Neff JL (2019) The solitary bees: biology, evolution, conservation. Princeton University Press, Princeton

    Book  Google Scholar 

  • Delgado-Carrillo O, Lopezaraiza-Mikel M, Ashworth L, Aguilar R, Lobo JA, Quesada M (2017) A scientific note on the first record of nesting sites of Peponapis crassidentata (Hymenoptera: Apidae). Apidologie 48:644–647

    Article  Google Scholar 

  • Delgado-Carrillo O, Martén-Rodríguez S, Ashworth L, Aguilar R, Lopezaraiza-Mikel M, Quesada M (2018) Temporal variation in pollination services to Cucurbita moschata is determined by bee gender and diversity. Ecosphere 9(11):e02506

    Article  Google Scholar 

  • Dorchin A, López-Uribe MM, Praz CJ, Griswold T, Danforth BN (2018) Phylogeny, new generic-level classification, and historical biogeography of the Eucera complex (Hymenoptera: Apidae). Mol Phylogenet Evol 119:81–92

    Article  CAS  PubMed  Google Scholar 

  • Garibaldi LA, Bartomeus I, Bommarco R, Klein AM, Cunningham SA et al (2015) Trait matching of flower visitors and crops predicts fruit set better than trait diversity. J Appl Ecol 52(6):1436–1444

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339(6127):1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Giannini TC, Saraiva AM, Alves-dos-Santos I (2010) Ecological niche modeling and geographical distribution of pollinator and plants: a case study of Peponapis fervens (Smith, 1879)(Eucerini: Apidae) and Cucurbita species (Cucurbitaceae). Ecol Inform 5(1):59–66

    Article  Google Scholar 

  • Greenleaf SS, Kremen C (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc Natl Acad Sci 103(37):13890–13895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartig F (2022) DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R. package version 0.4.5

  • Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I (2008) Functional group diversity of bee pollinators increases crop yield. Proc R Soc B 275(1648):2283–2291

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurd PD, Linsley EG, Whitaker TW (1971) Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25:218–234

    PubMed  Google Scholar 

  • Kamo T, Nikkeshi A, Tawaratsumida T, Tanaka Y, Nakamura S, Kishi S (2022) Pollination efficiency of bumblebee, honeybee, and hawkmoth in kabocha squash, Cucurbita maxima, production in Kagoshima, Japan. Appl Entomol Zool 57:119–129

    Article  Google Scholar 

  • Kearns CA, Inouye DW (1993) Techniques for pollination biologists University press of Colorado, Colorado

  • Klein AM, Boreux V, Fornoff F, Mupepele AC, Pufal G (2018) Relevance of wild and managed bees for human well-being. Curr Opin Insect Sci 26:82–88

    Article  PubMed  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    Article  PubMed  Google Scholar 

  • Krug C, Alves-dos-Santos A, Cane J (2010) Visiting bees of Cucurbita flowers (Cucurbitaceae) with emphasis on the presence of Peponapis fervens Smith (Eucerini – Apidae) – Santa Catarina, southern Brazil. Oecol Aust 14(1):128–139

    Article  Google Scholar 

  • Meléndez-Ramirez V, Magaña-Rueda S, Parra-Tabla V, Ayala R, Navarro J (2002) Diversity of native bee visitors of cucurbit crops (Cucurbitaceae) in Yucatán, México. J Insect Conserv 6:135–147

    Article  Google Scholar 

  • Michener CD (2007) The Bees of the World [2nd Edition]. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Ne’eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A, (2010) A framework for comparing pollinator performance: effectiveness and efficiency. Biol Rev 85:435–451

    Article  PubMed  Google Scholar 

  • Nepi M, Pacini E (1993) Pollination, pollen viability and pistil receptivity in Cucurbita pepo. Ann Bot 72(6):527–536

    Article  Google Scholar 

  • Nicodemo D, Couto RHN, Malheiros EB, De Jong D (2009) Honey bee as an effective pollinating agent of pumpkin. Sci Agric 66:476–480

    Article  Google Scholar 

  • Nicodemo D, Couto RHN, Malheiros EB, De Jong D (2007) Biologia floral em moranga (Cucurbita maxima Duch. Var “Exposiçao”). Acta Sci Agron 29:611–616

    Article  Google Scholar 

  • Osterman J, Aizen MA, Biesmeijer JC, Bosch J, Howlett BG et al (2021) Global trends in the number and diversity of managed pollinator species. Agric Ecosyst Environ 322:107653

    Article  Google Scholar 

  • Papanikolaou AD, Kühn I, Frenzel M, Kuhlmann M, Poschlod P et al (2017) Wild bee and floral diversity co-vary in response to the direct and indirect impacts of land use. Ecosphere 8(11):e02008

    Article  Google Scholar 

  • Passarelli LM (2002) Importancia de Apis mellifera L. en la producción de Cucurbita maxima Duch. (Zapallito de tronco). Investig Agrar Prod Prot Veg 17(1):5–13

  • Pfister SC, Eckerter PW, Krebs J, Cresswell JE, Schirmel J, Cresswell JE, Entling MH (2018) Dominance of cropland reduces the pollen deposition from bumble bees. Sci Rep 8(1):13873

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfister SC, Eckerter PW, Schirmel J, Cresswell JE, Entling MH (2017) Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees. R Soc Open Sci 4:170102

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinkus-Rendon MA, Parra-Tabla V, Meléndez-Ramírez V (2005) Floral resource use and interactions between Apis mellifera and native bees in cucurbit crops in Yucatán. México Can Entomol 137(4):441–449

    Article  Google Scholar 

  • Pisanty G, Afik O, Wajnberg E, Mandelik Y (2016) Watermelon pollinators exhibit complementarity in both visitation rate and single-visit pollination efficiency. J Appl Ecol 53:360–370

    Article  Google Scholar 

  • Pisanty G, Mandelik Y (2015) Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees. Ecol Appl 25(3):742–752

    Article  PubMed  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical. Computing, Vienna, Austria.  https://www.R-project.org/

  • Ramello PJ, Álvarez LJ, Almada V, Lucia M (2021) The melittofauna and its floral associations in a natural riparian forest in Buenos Aires province. Argentina J Apic Res 60(2):241–254

    Article  Google Scholar 

  • Rodrigo Gómez S, Ornosa C, Selfa J, Guara M, Polidori C (2016) Small sweat bees (Hymenoptera: Halictidae) as potential major pollinators of melon (Cucumis melo) in the Mediterranean. Ent Sci 19:55–66

    Article  Google Scholar 

  • Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proc Natl Acad Sci 99(1):535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer H, Renner SS (2011) Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 60(1):122–138

    Article  Google Scholar 

  • Serra BD, Campos LAO (2010) Entomophilic pollination of squash, Cucurbita moschata (Cucurbitaceae). Neotrop Entomol 39:153–159

    Article  PubMed  Google Scholar 

  • Teran AL (1965) Relaciones existentes entre insectos y flores de Cucurbitaceas de interés agrícola. Rev Agron Noroeste Arg 4(2):187–193

    Google Scholar 

  • Vidal MG, De Jong D, Wien HC, Morse RA (2010) Pollination and fruit set in pumpkin (Cucurbita pepo) by honey bees. Rev Bras Bot 33(1):107–113

    Article  Google Scholar 

  • Walters SA, Taylor BH (2006) Effects of honey bee pollination on pumpkin fruit and seed yield. HortScience 41(2):370–373

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed Effects Models and Extensions in Ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank Dr. Nydia Vitale and Dr. Estravis Barcala M.C., and anonymous reviewers for valuable comments and suggestions on earlier versions of this manuscript. We are also grateful to all farmers for allowing us to conduct this study in their fields. Authors PJR, VA, LA, LJA and ML are affiliated to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PJR and LA conceived the ideas and designed methodology of the research. PJR collected the data. ML, LJA and PJR identified specimens of bees. PJR and VA analyzed data and conducted statistical analyses. All authors wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Pablo J. Ramello.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Mathieu Lihoreau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript editor: Pablo J. Ramello

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramello, P.J., Almada, V., Ashworth, L. et al. Bee size increases pollen deposition in Cucurbita maxima (Cucurbitaceae) crops. Apidologie 55, 23 (2024). https://doi.org/10.1007/s13592-024-01065-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13592-024-01065-9

Keywords

Navigation